cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202535 a(n) = n*phi(n)*abs( mobius(n) ).

Original entry on oeis.org

1, 2, 6, 0, 20, 12, 42, 0, 0, 40, 110, 0, 156, 84, 120, 0, 272, 0, 342, 0, 252, 220, 506, 0, 0, 312, 0, 0, 812, 240, 930, 0, 660, 544, 840, 0, 1332, 684, 936, 0, 1640, 504, 1806, 0, 0, 1012, 2162, 0, 0, 0, 1632, 0, 2756, 0, 2200, 0, 2052, 1624, 3422
Offset: 1

Views

Author

R. J. Mathar, Dec 20 2011

Keywords

Comments

The inverse Mobius transform is b(n>=1) = 1, 3, 7, 3, 21, 21, 43, 3,7, 63, 11, 21,...., multiplicative with b(p^e) = A002061(p), e>=1 (see A119959). - R. J. Mathar
a(n) > 0 only when n is squarefree. - Alonso del Arte, Dec 20 2011

Examples

			a(5) = 20 because 5 * phi(5) * |mu(5)| = 5 * 4 * |(-1)| = 20.
		

Crossrefs

Cf. A079579.

Programs

  • Mathematica
    Table[n EulerPhi[n] Abs[MoebiusMu[n]], {n, 60}] (* Alonso del Arte, Dec 20 2011 *)
    f[p_, e_] := If[e == 1, (p-1)*p, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 26 2020 *)
  • PARI
    a(n)=n*eulerphi(n)*abs(moebius(n)) \\ Charles R Greathouse IV, Dec 20 2011
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p*X + p^2*X))[n], ", ")) \\ Vaclav Kotesovec, Jun 24 2020

Formula

a(n) = A002618(n) *A008966(n).
Multiplicative with a(p^e) = (p-1)*p if e=1, a(p^e)=0 if e>1.
Dirichlet g.f.: Sum_(n>=1) a(n)/n^s = Product_{primes p} (1-p^(1-s)+p^(2-s)).
From Vaclav Kotesovec, Jun 24 2020: (Start)
Dirichlet g.f.: zeta(s-2)*Product_{primes p} (1 + p^(3-2*s) - p^(4-2*s) - p^(1-s)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = A065464/3 = 0.142749835... (End)