cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A064549 a(n) = n * Product_{primes p|n} p.

Original entry on oeis.org

1, 4, 9, 8, 25, 36, 49, 16, 27, 100, 121, 72, 169, 196, 225, 32, 289, 108, 361, 200, 441, 484, 529, 144, 125, 676, 81, 392, 841, 900, 961, 64, 1089, 1156, 1225, 216, 1369, 1444, 1521, 400, 1681, 1764, 1849, 968, 675, 2116, 2209, 288, 343, 500, 2601, 1352
Offset: 1

Views

Author

Henry Bottomley, Oct 16 2001

Keywords

Comments

Index of first occurrence of n in A003557. - Franklin T. Adams-Watters, Jul 25 2014

Examples

			a(12) = 72 since 12 = 2^2*3 and 12*2*3 = 72.
		

Crossrefs

A permutation of the powerful numbers A001694.
Cf. A003557 (a left inverse), A007947, A057521, A078310, A082695, A202535.

Programs

  • Haskell
    a064549 n = a007947 n * n  -- Reinhard Zumkeller, Jul 23 2013
    
  • Magma
    [n^2/( (&+[Floor(k^n/n)-Floor((k^n - 1)/n) : k in [1..n]]) ): n in [1..50]]; // G. C. Greubel, Nov 02 2018
  • Maple
    a:= n -> n * convert(numtheory:-factorset(n), `*`):
    seq(a(n),n=1..100); # Robert Israel, Jul 25 2014
  • Mathematica
    a[n_] := n * Times @@ FactorInteger[n][[All, 1]]; Array[a, 100] (* Jean-François Alcover, Feb 17 2017 *)
    Table[n*Product[If[PrimeQ[d], d, 1], {d, Divisors[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Jun 15 2019 *)
  • PARI
    popf(n)= { local(f,p=1); f=factor(n); for(i=1, matsize(f)[1], p*=f[i, 1]); return(p) } { for (n=1, 1000, write("b064549.txt", n, " ", n*popf(n)) ) } \\ Harry J. Smith, Sep 18 2009
    
  • PARI
    A064549(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2]++); factorback(f); }; \\ Antti Karttunen, Aug 30 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p*X + p^2*X)/(1 - p*X))[n], ", ")) \\ Vaclav Kotesovec, Jun 24 2020
    

Formula

Multiplicative with a(p^k)=p^(k+1) when k>0.
a(n) = n*A007947(n) = n^2/A003557(n).
Dirichlet convolution of A000027 and A202535. - R. J. Mathar, Dec 20 2011
a(n) = A078310(n) - 1. - Reinhard Zumkeller, Jul 23 2013
A003557(a(n)) = n; a(A003557(n)) = A057521(n). - Antti Karttunen, Aug 30 2018
G.f.: Sum_{k>=1} mu(k)^2*phi(k)*k*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Nov 02 2018
From Vaclav Kotesovec, Jun 24 2020: (Start)
Dirichlet g.f.: zeta(s-2) * zeta(s-1) * Product_{primes p} (1 + p^(3-2*s) - p^(4-2*s) - p^(1-s)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = A065463/3 = A065464*Pi^2/18 = 0.234814...
(End)
Sum_{k>=1} 1/a(k) = zeta(2)*zeta(3)/zeta(6) = A082695. - Vaclav Kotesovec, Sep 19 2020
Sum_{k>=1} (-1)^(k+1)/a(k) = zeta(2)*zeta(3)/(3*zeta(6)) = (1/3) * A082695. - Amiram Eldar, Nov 18 2020

A367865 a(n) = Sum_{d|n} d * phi(d) * mu(d)^2.

Original entry on oeis.org

1, 3, 7, 3, 21, 21, 43, 3, 7, 63, 111, 21, 157, 129, 147, 3, 273, 21, 343, 63, 301, 333, 507, 21, 21, 471, 7, 129, 813, 441, 931, 3, 777, 819, 903, 21, 1333, 1029, 1099, 63, 1641, 903, 1807, 333, 147, 1521, 2163, 21, 43, 63, 1911, 471, 2757, 21, 2331, 129, 2401, 2439
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 03 2023

Keywords

Comments

Inverse Möbius transform of n * phi(n) * mu(n)^2.

Crossrefs

Cf. A000010 (phi), A007947 (rad), A008966 (mu^2), A202535.

Programs

  • Mathematica
    Table[Sum[d*EulerPhi[d]*MoebiusMu[d]^2, {d, Divisors[n]}], {n, 100}]
  • PARI
    a(n) = sumdiv(n, d, if (issquarefree(d), d*eulerphi(d))); \\ Michel Marcus, Dec 04 2023
    
  • Python
    from math import prod
    from sympy import primefactors
    def A367865(n): return prod(p*(p-1)+1 for p in primefactors(n)) # Chai Wah Wu, Dec 05 2023

Formula

Multiplicative with a(p^e) = p^2 - p + 1. - Amiram Eldar, Dec 04 2023
Sum_{k=1..n} a(k) ~ c * n^3/3, where c = Product_{p prime} (1 - 2/(1+p+p^2)) = 0.51478027457383523467921514707014858470711969900467102074735896602342984... - Vaclav Kotesovec, Dec 05 2023

A380322 a(n) is the sum of exponentially odd divisors of n^2.

Original entry on oeis.org

1, 3, 4, 11, 6, 12, 8, 43, 31, 18, 12, 44, 14, 24, 24, 171, 18, 93, 20, 66, 32, 36, 24, 172, 131, 42, 274, 88, 30, 72, 32, 683, 48, 54, 48, 341, 38, 60, 56, 258, 42, 96, 44, 132, 186, 72, 48, 684, 351, 393, 72, 154, 54, 822, 72, 344, 80, 90, 60, 264, 62, 96, 248
Offset: 1

Views

Author

Amiram Eldar, Jan 20 2025

Keywords

Comments

The number of exponentially odd divisors of n^2 is equal to the number of divisors of n, A000005(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(2*e+1) - p)/(p^2 - 1) + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; (p^(2*e+1) - p)/(p^2 - 1) + 1);}

Formula

a(n) = A033634(A000290(n)) = A033634(n^2).
a(n) >= A000203(n), with equality if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = (p^(2*e+1) - p)/(p^2 - 1) + 1.
Dirichlet g.f.: zeta(s-2) * zeta(s) * Product_{p prime} (1 - 1/p^(s-2) + 1/p^(s-1)).
Showing 1-3 of 3 results.