cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202536 Number of tilings of a 4 X n rectangle using straight (3 X 1) trominoes and 2 X 2 tiles.

Original entry on oeis.org

1, 0, 1, 3, 3, 8, 21, 31, 70, 165, 286, 615, 1351, 2548, 5353, 11343, 22320, 46349, 96516, 193944, 400313, 826747, 1678540, 3453642, 7105102, 14498569, 29781633, 61158957, 125108639, 256763850, 526846289, 1079030715, 2213527089, 4540131569, 9304062828
Offset: 0

Views

Author

Alois P. Heinz, Dec 20 2011

Keywords

Examples

			a(3) = 3, because there are 3 tilings of a 4 X 3 rectangle using straight (3 X 1) trominoes and 2 X 2 tiles:
._____.  ._____.  ._._._.
| | | |  |_____|  |_____|
| | | |  | | | |  |_____|
|_|_|_|  | | | |  |_____|
|_____|  |_|_|_|  |_____|
a(4) = 3, because there are 3 tilings of a 4 X 4 rectangle using straight (3 X 1) trominoes and 2 X 2 tiles:
._._____.  ._____._.  ._._._._.
| |_____|  |_____| |  | . | . |
| | . | |  | | . | |  |___|___|
|_|___| |  | |___|_|  | . | . |
|_____|_|  |_|_____|  |___|___|
		

Crossrefs

Column k=4 of A219967.

Programs

  • Maple
    gf:= -(x^3+x-1) *(x^18 -3*x^15 +x^14 +7*x^12 -3*x^11 -11*x^9 +3*x^8 +12*x^6 -x^5 -6*x^3+1) *(x-1)^2 *(x^2+x+1)^2 / (x^30 -x^29 +x^28 -5*x^27 +5*x^26 -4*x^25 +19*x^24 -12*x^23 +8*x^22 -56*x^21 +14*x^20 -10*x^19 +119*x^18 -2*x^17 +18*x^16 -174*x^15 -19*x^14 -35*x^13 +173*x^12 +31*x^11 +44*x^10 -115*x^9 -23*x^8 -29*x^7 +48*x^6 +8*x^5 +9*x^4 -11*x^3 -x^2 -x+1):
    a:= n-> coeff(series(gf, x, n+1),x,n);
    seq(a(n), n=0..50);

Formula

G.f.: see Maple program.