A202537 Decimal expansion of x satisfying e^x-e^(-2x)=1.
3, 8, 2, 2, 4, 5, 0, 8, 5, 8, 4, 0, 0, 3, 5, 6, 4, 1, 3, 2, 9, 3, 5, 8, 4, 9, 9, 1, 8, 4, 8, 5, 7, 3, 9, 3, 7, 5, 9, 4, 1, 6, 4, 2, 2, 4, 2, 0, 1, 9, 5, 4, 3, 0, 0, 2, 9, 2, 8, 3, 9, 3, 8, 3, 6, 1, 6, 5, 4, 8, 9, 0, 5, 5, 0, 5, 8, 3, 1, 8, 2, 0, 1, 7, 0, 1, 3, 5, 0, 8, 5, 1, 5, 9, 0, 0, 9, 1, 2
Offset: 0
Examples
0.382245085840035641329358499184857393759416422...
Crossrefs
Cf. A002390.
Programs
-
Mathematica
(* Program 1: A202537 *) u = 1; v = 2; f[x_] := E^(u*x) - E^(-v*x); g[x_] := 1 Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110] RealDigits[r] (* A202537 *) (* Program 2: implicit surface for e^(ux)-e(-vx)=1 *) f[{x_, u_, v_}] := E^(u*x) - E^(-v*x) - 1; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, .3}]}, {v, 1, 4}, {u, 2, 20}]; ListPlot3D[Flatten[t, 1]] (* for A202537 *) First[ RealDigits[ Log[ Root[#^3 - #^2 - 1 & , 1]], 10, 99]] (* Jean-François Alcover, Feb 26 2013 *)
-
PARI
solve(x=0,1,exp(x)-exp(-2*x)-1) \\ Charles R Greathouse IV, Feb 26 2013
-
PARI
log(polrootsreal(x^3-x^2-1)[1]) \\ Charles R Greathouse IV, Feb 07 2025
Extensions
Digits from a(90) on corrected by Jean-François Alcover, Feb 26 2013
Comments