cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A202543 Decimal expansion of the number x satisfying e^(x/2) - e^(-x/2) = 1.

Original entry on oeis.org

9, 6, 2, 4, 2, 3, 6, 5, 0, 1, 1, 9, 2, 0, 6, 8, 9, 4, 9, 9, 5, 5, 1, 7, 8, 2, 6, 8, 4, 8, 7, 3, 6, 8, 4, 6, 2, 7, 0, 3, 6, 8, 6, 6, 8, 7, 7, 1, 3, 2, 1, 0, 3, 9, 3, 2, 2, 0, 3, 6, 3, 3, 7, 6, 8, 0, 3, 2, 7, 7, 3, 5, 2, 1, 6, 4, 4, 3, 5, 4, 8, 8, 2, 4, 0, 1, 8, 8, 5, 8, 2, 4, 5, 4, 4, 6, 9, 4, 9
Offset: 0

Views

Author

Clark Kimberling, Dec 21 2011

Keywords

Comments

See A202537 for a guide to related sequences. The Mathematica program includes a graph.
W. Gawronski et al. in their paper - see ref. below - obtained the asymptotics for the Chebyshev-Stirling numbers. In the algebraic description of the respective "asymptotic coefficients" the number x = 2*log phi, where phi is the golden section, play the central role. - Roman Witula, Feb 02 2015
Also two times the Lévy measure for the continued fraction of the golden section, i.e., A202543/log(2) is the mean number of bits gained from the next convergent of the continued fraction representation. (See also Dan Lascu in links.) - A.H.M. Smeets, Jun 06 2018

Examples

			0.9624236501192068949955178268487368462703686...
		

Crossrefs

Programs

  • Mathematica
    u = 1/2; v = 1/2;
    f[x_] := E^(u*x) - E^(-v*x); g[x_] := 1
    Plot[{f[x], g[x]}, {x, 0, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .9, 1}, WorkingPrecision -> 110]
    RealDigits[r]    (* A202543 *)
    RealDigits[ Log[ (3+Sqrt[5])/2], 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)
    RealDigits[ FindRoot[ Exp[x/2] == 1 +  Exp[-x/2] , {x, 0}, WorkingPrecision -> 128][[1, 2]]][[1]] (* Robert G. Wilson v, Jun 13 2018 *)
  • PARI
    2*asinh(1/2) \\ Michel Marcus, Jun 24 2018, after A002390

Formula

Equals 2*A002390. - A.H.M. Smeets, Jun 06 2018
From Amiram Eldar, Aug 21 2020: (Start)
Equals log(A104457) = log(1 + A001622).
Equals 2*arcsinh(1/2). [corrected by Georg Fischer, Jul 12 2021]
Equals Sum_{k>=0} (-1)^k*binomial(2*k,k)/((2*k+1)*16^k). (End)
Equals Pi*i + Sum_{k>=0} arctanh(phi^(2^k))/2^k, with phi = A001622 and i = sqrt(-1). - Antonio Graciá Llorente, Feb 13 2025

Extensions

Typo in name fixed by Jean-François Alcover, Feb 27 2013

A224868 a(1) = greatest k such that H(k) - H(4) < 1/3 + 1/4; a(2) = greatest k such that H(k) - H(a(1)) < H(a(1)) - H(4); and for n > 2, a(n) = greatest k such that H(k) - H(a(n-1)) > H(a(n-1)) - H(a(n-2)), where H = harmonic number.

Original entry on oeis.org

7, 11, 17, 26, 39, 58, 86, 127, 187, 275, 404, 593, 870, 1276, 1871, 2743, 4021, 5894, 8639, 12662, 18558, 27199, 39863, 58423, 85624, 125489, 183914, 269540, 395031, 578947, 848489, 1243522, 1822471, 2670962, 3914486, 5736959, 8407923, 12322411, 18059372
Offset: 1

Views

Author

Clark Kimberling, Jul 23 2013

Keywords

Comments

Suppose that x and y are positive integers and that x <=y. Let c(1) = y and c(2) = greatest k such that H(k) - H(y) < H(y) - H(x); for n > 2, let c(n) = greatest such that H(k) - H(c(n-1)) < H(c(n-1)) - H(c(n-2)). Then 1/x + ... + 1/c(1) > 1/(c(1)+1) + ... + 1/(c(2)) > 1/(c(2)+1) + ... + 1/(c(3)) > ... The decreasing sequences H(c(n)) - H(c(n-1)) and c(n)/c(n-1) converge. For what choices of (x,y) is the sequence c(n) linearly recurrent?
For A224868, (x,y) = (3,4); it appears that the sequence a(n) is linearly recurrent with signature (2,-1,1,-1). Possibly the constant at A202537 is the limit of the sequences H(c(n))-H(c(n-1)). Possibly the constant at A092526 is the limit of c(n)/c(n-1).

Examples

			The first three values (a(1),a(2),a(3)) = (7,11,17) match the beginning of the following inequality chain (and partition of {1/m: m>=3}):
1/3+1/4 > 1/5+1/6+1/7 > 1/8+1/9+1/10+1/11 > 1/12+ ... +1/17 > ...
		

Crossrefs

Cf. A224820.

Programs

  • Mathematica
    z = 100; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 3; y = 4; a[1] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}]; m = Map[a, Range[z]] (* A224868 *)
    N[Table[h[a[t]] - h[a[t - 1]], {t, 2, z, 25}], 5]  (* A202537? *)
    N[Table[a[n]/a[n - 1], {n, 2, z, 25}], 5]  (* A092526? *)
    (* Peter J. C. Moses, Jul 23 2013 *)

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) (conjectured).
G.f.: (7 - 3 x + 2 x^2 - 4 x^3)/(1 - 2 x + x^2 - x^3 + x^4) (conjectured).

A202541 Decimal expansion of the number x satisfying e^(2x) - e^(-2x) = 1.

Original entry on oeis.org

2, 4, 0, 6, 0, 5, 9, 1, 2, 5, 2, 9, 8, 0, 1, 7, 2, 3, 7, 4, 8, 8, 7, 9, 4, 5, 6, 7, 1, 2, 1, 8, 4, 2, 1, 1, 5, 6, 7, 5, 9, 2, 1, 6, 7, 1, 9, 2, 8, 3, 0, 2, 5, 9, 8, 3, 0, 5, 0, 9, 0, 8, 4, 4, 2, 0, 0, 8, 1, 9, 3, 3, 8, 0, 4, 1, 1, 0, 8, 8, 7, 2, 0, 6, 0, 0, 4, 7, 1, 4, 5, 6, 1, 3, 6, 1, 7, 3, 7
Offset: 0

Views

Author

Clark Kimberling, Dec 21 2011

Keywords

Comments

See A202537 for a guide to related sequences. The Mathematica program includes a graph.
Archimedes's-like scheme: set p(0) = 1/(2*sqrt(5)), q(0) = 1/4; p(n+1) = 2*p(n)*q(n)/(p(n)+q(n)) (arithmetic mean of reciprocals, i.e., 1/p(n+1) = (1/p(n) + 1/q(n))/2), q(n+1) = sqrt(p(n+1)*q(n)) (geometric mean, i.e., log(q(n+1)) = (log(p(n+1)) + log(q(n)))/2), for n >= 0. The error of p(n) and q(n) decreases by a factor of approximately 4 each iteration, i.e., approximately 2 bits are gained by each iteration. Set r(n) = (2*q(n) + p(n))/3, the error decreases by a factor of approximately 16 for each iteration, i.e., approximately 4 bits are gained by each iteration. For a similar scheme see also A244644. - A.H.M. Smeets, Jul 12 2018

Examples

			0.24060591252980172374887945671218421156759216719...
		

Crossrefs

Programs

  • Mathematica
    u = 2; v = 2;
    f[x_] := E^(u*x) - E^(-v*x); g[x_] := 1
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .2, .3}, WorkingPrecision -> 110]
    RealDigits[r]   (* A202541 *)
    RealDigits[ Log[ (1+Sqrt[5])/2 ] / 2, 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)
    RealDigits[ FindRoot[ Exp[2x] - Exp[-2x] == 1, {x, 1}, WorkingPrecision -> 128][[1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    asinh(1/2)/2 \\ Michel Marcus, Jul 12 2018

Formula

Equals (1/2)*arcsinh(1/2) or (1/2)*log(phi), phi being the golden ratio. - A.H.M. Smeets, Jul 12 2018
Equals Sum_{k>=1} (-1)^(k+1) * arctanh(1/Fibonacci(3*k)^2) (Melham and Shannon, 1995). - Amiram Eldar, Oct 04 2021
Equals A002390/2. - Alois P. Heinz, Jul 14 2022
Equals arctanh(sqrt(5)-2). - Amiram Eldar, Feb 09 2024

A202538 Decimal expansion of the number x satisfying e^x-e^(-3x)=1.

Original entry on oeis.org

3, 2, 2, 2, 8, 4, 6, 1, 5, 9, 7, 1, 0, 3, 0, 0, 6, 0, 0, 3, 6, 2, 3, 5, 4, 8, 6, 2, 8, 9, 1, 3, 9, 2, 3, 5, 4, 5, 5, 4, 4, 3, 1, 1, 4, 8, 0, 7, 4, 6, 3, 8, 6, 8, 3, 0, 3, 7, 2, 4, 5, 0, 6, 7, 0, 1, 4, 1, 5, 2, 2, 6, 1, 2, 9, 4, 3, 3, 8, 1, 6, 4, 6, 7, 8, 0, 0, 8, 9, 8, 7, 3, 2, 7, 2, 1, 6, 4, 6
Offset: 0

Views

Author

Clark Kimberling, Dec 21 2011

Keywords

Comments

See A202537 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.32228461597103006003623548628913923545544311...
		

Crossrefs

Cf. A202537.

Programs

  • Mathematica
    u = 1; v = 3;
    f[x_] := E^(u*x) - E^(-v*x); g[x_] := 1
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110]
    RealDigits[r]  (* A202538 *)
    RealDigits[ Log[ Root[#^4 - #^3 - 1&, 2]], 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)
  • PARI
    log(polrootsreal(x^4-x^3-1)[2]) \\ Charles R Greathouse IV, May 15 2019

A202540 Decimal expansion of the number x satisfying e^(3x)-e^(-x)=1.

Original entry on oeis.org

1, 9, 9, 4, 6, 0, 5, 7, 8, 2, 4, 3, 0, 0, 5, 3, 5, 1, 4, 8, 8, 5, 7, 7, 7, 1, 8, 3, 8, 4, 9, 4, 9, 1, 7, 8, 3, 9, 2, 7, 7, 6, 9, 2, 6, 2, 0, 8, 1, 2, 4, 9, 2, 4, 0, 1, 5, 3, 6, 4, 5, 4, 7, 1, 6, 8, 0, 8, 6, 6, 4, 3, 9, 3, 8, 4, 3, 2, 8, 5, 4, 8, 7, 9, 2, 7, 9, 9, 8, 0, 3, 6, 1, 6, 3, 6, 4, 6, 4
Offset: 0

Views

Author

Clark Kimberling, Dec 21 2011

Keywords

Comments

See A202537 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.19946057824300535148857771838494917839277692...
		

Crossrefs

Cf. A202537.

Programs

  • Mathematica
    u = 3; v = 1;
    f[x_] := E^(u*x) - E^(-v*x); g[x_] := 1
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
    RealDigits[r]     (* A202540 *)
    RealDigits[ Log[ Root[#^4 - # - 1&, 2]], 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)
  • PARI
    log(polrootsreal(x^4-x-1)[2]) \\ Charles R Greathouse IV, May 14 2019

A202539 Decimal expansion of the number x satisfying e^(2x)-e^(-x)=1.

Original entry on oeis.org

2, 8, 1, 1, 9, 9, 5, 7, 4, 3, 2, 2, 9, 6, 1, 8, 4, 6, 5, 1, 2, 0, 5, 0, 7, 6, 4, 0, 6, 7, 8, 7, 8, 2, 9, 9, 7, 9, 2, 0, 2, 3, 2, 2, 5, 7, 4, 4, 0, 6, 6, 4, 6, 2, 6, 7, 5, 7, 3, 0, 3, 3, 4, 3, 1, 8, 0, 3, 8, 4, 5, 3, 0, 6, 2, 1, 2, 0, 8, 9, 1, 3, 2, 2, 9, 8, 7, 7, 0, 7, 4, 7, 5, 4, 9, 4, 0, 5, 4
Offset: 0

Views

Author

Clark Kimberling, Dec 21 2011

Keywords

Comments

See A202537 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.281199574322961846512050764067878299792023...
		

Crossrefs

Cf. A202537.

Programs

  • Mathematica
    u = 2; v = 1;
    f[x_] := E^(u*x) - E^(-v*x); g[x_] := 1
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .2, .3}, WorkingPrecision -> 110]
    RealDigits[r]  (* A202539 *)
    RealDigits[ Log[ Root[#^3 - # - 1&, 1]], 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)
  • PARI
    log(polrootsreal(x^3-x-1)[1]) \\ Charles R Greathouse IV, May 15 2019

Formula

Equals log((v^2+12)/(6*v)) with v = (108+12*sqrt(69))^(1/3). - Alois P. Heinz, Jul 14 2022

A202542 Decimal expansion of the number x satisfying e^(3x)-e^(-3x)=1.

Original entry on oeis.org

1, 6, 0, 4, 0, 3, 9, 4, 1, 6, 8, 6, 5, 3, 4, 4, 8, 2, 4, 9, 9, 2, 5, 2, 9, 7, 1, 1, 4, 1, 4, 5, 6, 1, 4, 1, 0, 4, 5, 0, 6, 1, 4, 4, 4, 7, 9, 5, 2, 2, 0, 1, 7, 3, 2, 2, 0, 3, 3, 9, 3, 8, 9, 6, 1, 3, 3, 8, 7, 9, 5, 5, 8, 6, 9, 4, 0, 7, 2, 5, 8, 1, 3, 7, 3, 3, 6, 4, 7, 6, 3, 7, 4, 2, 4, 1, 1, 5, 8
Offset: 0

Views

Author

Clark Kimberling, Dec 21 2011

Keywords

Comments

See A202537 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=0.1604039416865344824992529711414561410450614447...
		

Crossrefs

Cf. A202537.

Programs

  • Mathematica
    u = 3; v = 3;
    f[x_] := E^(u*x) - E^(-v*x); g[x_] := 1
    Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .2, .3}, WorkingPrecision -> 110]
    RealDigits[r]    (* A202542 *)
    RealDigits[ Log[ (1+Sqrt[5])/2 ] / 3, 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)
  • PARI
    log((sqrt(5)+1)/2)/3 \\ Charles R Greathouse IV, May 14 2019
Showing 1-7 of 7 results.