cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A202537 Decimal expansion of x satisfying e^x-e^(-2x)=1.

Original entry on oeis.org

3, 8, 2, 2, 4, 5, 0, 8, 5, 8, 4, 0, 0, 3, 5, 6, 4, 1, 3, 2, 9, 3, 5, 8, 4, 9, 9, 1, 8, 4, 8, 5, 7, 3, 9, 3, 7, 5, 9, 4, 1, 6, 4, 2, 2, 4, 2, 0, 1, 9, 5, 4, 3, 0, 0, 2, 9, 2, 8, 3, 9, 3, 8, 3, 6, 1, 6, 5, 4, 8, 9, 0, 5, 5, 0, 5, 8, 3, 1, 8, 2, 0, 1, 7, 0, 1, 3, 5, 0, 8, 5, 1, 5, 9, 0, 0, 9, 1, 2
Offset: 0

Views

Author

Clark Kimberling, Dec 21 2011

Keywords

Comments

If u>0 and v>0, there is a unique number x satisfying e^(ux)-e^(-vx)=1. Guide to related sequences, with graphs included in Mathematica programs:
u.... v.... x
1.... 1.... A002390
1.... 2.... A202537
1.... 3.... A202538
2.... 1.... A202539
3.... 1.... A202540
2.... 2.... A202541
3.... 3.... A202542
1/2..1/2... A202543
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f. For an example related to A202537, take f(x,u,v)=e^(ux)-e^(-vx)-1 and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			0.382245085840035641329358499184857393759416422...
		

Crossrefs

Cf. A002390.

Programs

  • Mathematica
    (* Program 1:  A202537 *)
    u = 1; v = 2;
    f[x_] := E^(u*x) - E^(-v*x); g[x_] := 1
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110]
    RealDigits[r]  (* A202537 *)
    (* Program 2: implicit surface for e^(ux)-e(-vx)=1 *)
    f[{x_, u_, v_}] := E^(u*x) - E^(-v*x) - 1;
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, .3}]}, {v, 1, 4}, {u, 2, 20}];
    ListPlot3D[Flatten[t, 1]] (* for A202537 *)
    First[ RealDigits[ Log[ Root[#^3 - #^2 - 1 & , 1]], 10, 99]] (* Jean-François Alcover, Feb 26 2013 *)
  • PARI
    solve(x=0,1,exp(x)-exp(-2*x)-1) \\ Charles R Greathouse IV, Feb 26 2013
    
  • PARI
    log(polrootsreal(x^3-x^2-1)[1]) \\ Charles R Greathouse IV, Feb 07 2025

Extensions

Digits from a(90) on corrected by Jean-François Alcover, Feb 26 2013

A356032 Decimal expansion of the positive real root of x^4 + x - 1.

Original entry on oeis.org

7, 2, 4, 4, 9, 1, 9, 5, 9, 0, 0, 0, 5, 1, 5, 6, 1, 1, 5, 8, 8, 3, 7, 2, 2, 8, 2, 1, 8, 7, 0, 3, 6, 5, 6, 5, 7, 8, 6, 4, 9, 4, 4, 8, 1, 3, 5, 0, 0, 1, 1, 0, 1, 7, 2, 7, 0, 3, 9, 8, 0, 2, 8, 4, 3, 7, 4, 5, 2, 9, 0, 6, 4, 7, 5, 1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 27 2022

Keywords

Comments

The other real (negative) root is -A060007.
One of the pair of complex conjugate roots is obtained by negating sqrt(2*u) and sqrt(u) in the formula for r below, giving 0.248126062... - 1.033982060...*i.
Also, the absolute value of the negative real root of x^4 - x - 1, cf. A060007. - M. F. Hasler, Jul 12 2025

Examples

			r = 0.724491959000515611588372282187036565786494481350011017270...
		

Crossrefs

Cf. A060007 (positive root of x^4 - x - 1), A072223, A086106, A202538, A376658.

Programs

  • Mathematica
    First[RealDigits[x/.N[{x->Root[-1+#1+#1^4 &,2,0]},75]]] (* Stefano Spezia, Aug 27 2022 *)
  • PARI
    solve(x=0, 1, x^4 + x - 1) \\ Michel Marcus, Aug 28 2022
    
  • PARI
    polrootsreal(x^4 + x - 1)[2] \\ M. F. Hasler, Jul 12 2025

Formula

r = (-sqrt(2)*u + sqrt(sqrt(2*u) - 2*u^2))/(2*sqrt(u)), with u = (Ap^(1/3) + ep*Am^(1/3))/3, where Ap = (3/16)*(9 + sqrt(3*283)), Am = (3/16)*(9 - sqrt(3*283)) and ep = (-1 + sqrt(3)*i)/2, with i = sqrt(-1). For the trigonometric version set u = (2/3)*sqrt(3)*sinh((1/3)*arcsinh((3/16)* sqrt(3))).
Equals sqrt(A072223) = 1/A086106 = 1/exp(A202538). - Hugo Pfoertner, Jul 13 2025
Showing 1-2 of 2 results.