cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A002544 a(n) = binomial(2*n+1,n)*(n+1)^2.

Original entry on oeis.org

1, 12, 90, 560, 3150, 16632, 84084, 411840, 1969110, 9237800, 42678636, 194699232, 878850700, 3931426800, 17450721000, 76938289920, 337206098790, 1470171918600, 6379820115900, 27569305764000, 118685861314020, 509191949220240, 2177742427450200, 9287309860732800
Offset: 0

Views

Author

Keywords

Comments

Coefficients for numerical differentiation.
Take the first n integers 1,2,3..n and find all combinations with repetitions allowed for the first n of them. Find the sum of each of these combinations to get this sequence. Example for 1 and 2: 1,2,1+1,1+2,2+2 gives sum of 12=a(2). - J. M. Bergot, Mar 08 2016
Let cos(x) = 1 -x^2/2 +x^4/4!-x^6/6!.. = Sum_i (-1)^i x^(2i)/(2i)! be the standard power series of the cosine, and y = 2*(1-cos(x)) = 4*sin^2(x/2) = x^2 -x^4/12 +x^6/360 ...= Sum_i 2*(-1)^(i+1) x^(2i)/(2i)! be a closely related series. Then this sequence represents the reversion x^2 = Sum_i 1/a(i) *y^(i+1). - R. J. Mathar, May 03 2022

References

  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 514.
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 92.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A002736/2.
A diagonal of A331430.

Programs

  • Maple
    seq((n+1)^2*(binomial(2*n+2, n+1))/2, n=0..29); # Zerinvary Lajos, May 31 2006
  • Mathematica
    Table[Binomial[2n+1,n](n+1)^2,{n,0,20}] (* Harvey P. Dale, Mar 23 2011 *)
  • PARI
    a(n)=binomial(2*n+1,n)*(n+1)^2
    
  • PARI
    x='x+O('x^99); Vec((1+2*x)/(1-4*x)^(5/2)) \\ Altug Alkan, Jul 09 2016
    
  • Python
    from sympy import binomial
    def a(n): return binomial(2*n + 1, n)*(n + 1)**2 # Indranil Ghosh, Apr 18 2017

Formula

G.f.: (1 + 2x)/(1 - 4x)^(5/2).
a(n-1) = sum(i_1 + i_2 + ... + i_n) where the sum is over 0 <= i_1 <= i_2 <= ... <= i_n <= n; a(n) = (n+1)^2 C(2n+1, n). - David Callan, Nov 20 2003
a(n) = (n+1)^2 * binomial(2*n+2,n+1)/2. - Zerinvary Lajos, May 31 2006
Asymptotics: a(n)-> (1/64) * (128*n^2+176*n+41) * 4^n * n^(-1/2)/(sqrt(Pi)), for n->infinity. - Karol A. Penson, Aug 05 2013
G.f.: 2F1(3/2,2;1;4x). - R. J. Mathar, Aug 09 2015
a(n) = A002457(n)*(n+1). - R. J. Mathar, Aug 09 2015
a(n) = A000217(n)*A000984(n). - J. M. Bergot, Mar 10 2016
a(n-1) = A001791(n)*n*(n+1)/2. - Anton Zakharov, Jul 04 2016
From Ilya Gutkovskiy, Jul 04 2016: (Start)
E.g.f.: ((1 + 2*x)*(1 + 8*x)*BesselI(0,2*x) + 2*x*(3 + 8*x)*BesselI(1,2*x))*exp(2*x).
Sum_{n>=0} 1/a(n) = Pi^2/9 = A100044. (End)
From Peter Bala, Apr 18 2017: (Start)
With x = y^2/(1 + y) we have log^2(1 + y) = Sum_{n >= 0} (-1)^n*x^(n+1)/a(n). See Shenton and Kemp.
Series reversion ( Sum_{n >= 0} (-1)^n*x^(n+1)/a(n) ) = Sum_{n >= 1} 2*x^n/(2*n)! = Sum_{n >= 1} x^n/A002674(n). (End)
D-finite with recurrence n^2*a(n) -2*(n+1)*(2*n+1)*a(n-1)=0. - R. J. Mathar, Feb 08 2021
Sum_{n>=0} (-1)^n/a(n) = 4*arcsinh(1/2)^2 = A202543^2. - Amiram Eldar, May 14 2022

A202537 Decimal expansion of x satisfying e^x-e^(-2x)=1.

Original entry on oeis.org

3, 8, 2, 2, 4, 5, 0, 8, 5, 8, 4, 0, 0, 3, 5, 6, 4, 1, 3, 2, 9, 3, 5, 8, 4, 9, 9, 1, 8, 4, 8, 5, 7, 3, 9, 3, 7, 5, 9, 4, 1, 6, 4, 2, 2, 4, 2, 0, 1, 9, 5, 4, 3, 0, 0, 2, 9, 2, 8, 3, 9, 3, 8, 3, 6, 1, 6, 5, 4, 8, 9, 0, 5, 5, 0, 5, 8, 3, 1, 8, 2, 0, 1, 7, 0, 1, 3, 5, 0, 8, 5, 1, 5, 9, 0, 0, 9, 1, 2
Offset: 0

Views

Author

Clark Kimberling, Dec 21 2011

Keywords

Comments

If u>0 and v>0, there is a unique number x satisfying e^(ux)-e^(-vx)=1. Guide to related sequences, with graphs included in Mathematica programs:
u.... v.... x
1.... 1.... A002390
1.... 2.... A202537
1.... 3.... A202538
2.... 1.... A202539
3.... 1.... A202540
2.... 2.... A202541
3.... 3.... A202542
1/2..1/2... A202543
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f. For an example related to A202537, take f(x,u,v)=e^(ux)-e^(-vx)-1 and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			0.382245085840035641329358499184857393759416422...
		

Crossrefs

Cf. A002390.

Programs

  • Mathematica
    (* Program 1:  A202537 *)
    u = 1; v = 2;
    f[x_] := E^(u*x) - E^(-v*x); g[x_] := 1
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110]
    RealDigits[r]  (* A202537 *)
    (* Program 2: implicit surface for e^(ux)-e(-vx)=1 *)
    f[{x_, u_, v_}] := E^(u*x) - E^(-v*x) - 1;
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, .3}]}, {v, 1, 4}, {u, 2, 20}];
    ListPlot3D[Flatten[t, 1]] (* for A202537 *)
    First[ RealDigits[ Log[ Root[#^3 - #^2 - 1 & , 1]], 10, 99]] (* Jean-François Alcover, Feb 26 2013 *)
  • PARI
    solve(x=0,1,exp(x)-exp(-2*x)-1) \\ Charles R Greathouse IV, Feb 26 2013
    
  • PARI
    log(polrootsreal(x^3-x^2-1)[1]) \\ Charles R Greathouse IV, Feb 07 2025

Extensions

Digits from a(90) on corrected by Jean-François Alcover, Feb 26 2013

A112449 a(n+2) = (a(n+1)^3 + a(n+1))/a(n) with a(0)=1, a(1)=1.

Original entry on oeis.org

1, 1, 2, 10, 505, 12878813, 4229958765311886322, 5876687051603582015287706866081267480733704277890
Offset: 0

Views

Author

Andrew Hone, Dec 12 2005

Keywords

Comments

A second-order recurrence with the Laurent property. This property is satisfied by any second-order recurrence of the form a(n+2) = f(a(n+1))/a(n) with f being a polynomial of the form f(x) = x*p(x) where p is a polynomial of degree d with integer coefficients such that p(0)=1 and p has the reciprocal property x^d*p(1/x) = p(x). Hence if a(0) = a(1) = 1 then a(n) is an integer for all n.
As n tends to infinity, log(log(a(n)))/n tends to log((3+sqrt(5))/2) or about 0.962 (A202543).

Crossrefs

Programs

  • Maple
    a[0]:=1; a[1]:=1; f(x):=x^3+x;
    for n from 0 to 8 do a[n+2]:=simplify(subs(x=a[n+1],f(x))/a[n]) od;
    s[3]:=ln(10); s[4]:=ln(505);
    for n from 3 to 10000 do s[n+2]:=evalf(3*s[n+1]+ln(1+exp(-2*s[n+1]))-s[n]): od: print(evalf(ln(s[10002])/(10002))): evalf(ln((3+sqrt(5))/2));
    # s[n]=ln(a[n]); ln(s[n])/n converges slowly to 0.962...
    f:=proc(n) option remember; local i,j,k,t1,t2,t3; if n <= 1 then RETURN(1); fi; (f(n-1)^3+f(n-1))/f(n-2); end;
    # N. J. A. Sloane
  • Mathematica
    nxt[{a_,b_}]:={b,(b^3+b)/a}; NestList[nxt,{1,1},10][[All,1]] (* Harvey P. Dale, Jun 26 2017 *)
  • Ruby
    def A(l, m, n)
      a = Array.new(2 * m, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[1..-1].inject(:*) + a[m] ** l
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A112449(n)
      A(3, 1, n)
    end # Seiichi Manyama, Nov 20 2016

Formula

a(1-n) = a(n). - Seiichi Manyama, Nov 20 2016

A318057 a(n) is the number of binary places to which n-th convergent of continued fraction expansion of the golden section matches the correct value.

Original entry on oeis.org

0, -2, 3, 2, 5, 2, 6, 9, 10, 9, 13, 12, 15, 16, 19, 16, 20, 22, 24, 25, 27, 29, 28, 30, 33, 32, 36, 32, 38, 32, 41, 42, 44, 45, 46, 47, 50, 48, 52, 54, 53, 56, 53, 58, 59, 60, 64, 62, 66, 62, 67, 69, 71, 73, 75, 74, 77, 78, 80, 82, 81, 84, 81, 87, 81, 88, 90
Offset: 1

Views

Author

A.H.M. Smeets, Aug 14 2018

Keywords

Comments

The correct binary value of the golden section is given in A068432; the continued fraction terms of the golden section is given in A000012.
For the number of correct decimal digits of the golden section see A318058.
The denominator of the k-th convergent obtained from a continued fraction tend to k*A001622; the error between the k-th convergent and the constant itself tends to 1/(2*k*A001622), or in binary digits 2*k*log(A001622)/log(2) bits after the binary point.
The sequence for quaternary digits is obtained by floor(a(n)/2), the sequence for octal digits is obtained by floor(a(n)/3), and the sequence for hexadecimal digits is obtained by floor(a(n)/4).

Examples

			   n   convergent         binary expansion       a(n)
  ==  =============  ==========================  ====
   1    1 / 1          1.0                         0
   2    2 / 1         10.0                        -2
   3    3 / 2          1.1000                      3
   4    5 / 3          1.101                       2
   5    8 / 5          1.100110                    5
   6   13 / 8          1.101                       2
   7   21 / 13         1.1001110                   6
   8   34 / 21         1.1001111001                9
   9   55 / 34         1.10011110000              10
  10   89 / 55         1.1001111001                9
  oo  lim = A068432    1.1001111000110111011110   --
		

Crossrefs

Programs

  • Python
    p, q, i, base = 1, 1, 0, 2
    while i < 20200:
        p, q, i = p+q, p, i+1
    a0, p, q = p//q, q, p
    i, p, dd = 0, p*base, [0]
    while i < 30000:
        d, p, i = p//q, (p%q)*base, i+1
        dd = dd+[d]
    n, pn, qn = 0, 1, 0
    while n < 20000:
        n, pn, qn = n+1, pn+qn, pn
        if pn//qn != a0:
            print(n, "- manual!")
        else:
            i, p, q, di = 0, (pn%qn)*base, qn, 0
            while di == dd[i]:
                i, di, p = i+1, p//q, (p%q)*base
            print(n, i-1)

Formula

Lim {n -> oo} a(n)/n = 2*log(A001622)/log(2) = 2*A002390/log(2) = A202543/log(2) = 2*A242208.

A318058 a(n) is the number of decimal places to which the n-th convergent of the continued fraction expansion of the golden section matches the correct value.

Original entry on oeis.org

0, -1, 0, 1, 1, 1, 2, 2, 2, 3, 2, 4, 4, 5, 5, 5, 6, 5, 7, 7, 8, 7, 9, 9, 9, 10, 10, 10, 11, 10, 12, 12, 13, 12, 13, 14, 15, 14, 15, 16, 16, 16, 17, 17, 17, 18, 18, 19, 18, 20, 20, 21, 21, 21, 22, 22, 23, 23, 24, 23, 24, 25, 25, 26, 26, 27, 27, 27, 28, 28, 29, 29, 29, 30, 30
Offset: 1

Views

Author

A.H.M. Smeets, Aug 14 2018

Keywords

Comments

The correct decimal value of the golden section is given in A001622; the continued fraction terms of the golden section is given in A000012.
For the number of correct decimal digits of the golden section see A318057.
The denominator of the k-th convergent obtained from a continued fraction tend to k*A001622; the error between the k-th convergent and the constant itself tends to 1/(2*k*A001622), or in binary digits 2*k*log(A001622)/log(2) bits after the binary point.

Examples

			   n   convergent         decimal expansion     a(n)
  ==  =============  =========================  ====
   1    1 / 1         1.0                         0
   2    2 / 1         2.0                        -1
   3    3 / 2         1.5                         0
   4    5 / 3         1.66                        1
   5    8 / 5         1.60                        1
   6   13 / 8         1.62                        1
   7   21 / 13        1.615                       2
   8   34 / 21        1.619                       2
   9   55 / 34        1.617                       2
  10   89 / 55        1.6181                      3
  oo  lim = A001622   1.6180339887498948482      --
		

Crossrefs

Programs

  • Python
    p, q, i, base = 1, 1, 0, 10
    while i < 20200:
        p, q, i = p+q, p, i+1
    a0, p, q = p//q, q, p
    i, p, dd = 0, p*base, [0]
    while i < 30000:
        d, p, i = p//q, (p%q)*base, i+1
        dd = dd+[d]
    n, pn, qn = 0, 1, 0
    while n < 20000:
        n, pn, qn = n+1, pn+qn, pn
        if pn//qn != a0:
            print(n, "- manual!")
        else:
            i, p, q, di = 0, (pn%qn)*base, qn, 0
            while di == dd[i]:
                i, di, p = i+1, p//q, (p%q)*base
            print(n, i-1)

Formula

Limit_{n -> oo} a(n)/n = 2*log(A001622)/log(10) = 2*A002390/log(10) = A202543/log(10) = 2*A097348.

A182546 Decimal expansion of | log_phi(i) |, where phi is the golden ratio and i is the imaginary unit.

Original entry on oeis.org

3, 2, 6, 4, 2, 5, 1, 3, 0, 2, 6, 3, 6, 4, 9, 6, 9, 0, 6, 7, 3, 1, 5, 3, 3, 6, 7, 8, 4, 3, 6, 2, 9, 4, 9, 0, 7, 8, 1, 4, 9, 1, 0, 3, 9, 3, 1, 5, 8, 8, 0, 5, 1, 8, 1, 8, 9, 6, 3, 2, 6, 6, 9, 3, 9, 9, 8, 2, 1, 2, 5, 6, 9, 4, 1, 5, 2, 0, 6, 3, 8, 1, 5, 5, 9, 0, 6, 4, 1, 6, 4, 3, 5, 6, 0, 9, 1, 4, 8, 5, 6, 1, 9, 0, 5
Offset: 1

Views

Author

Volker Werner, May 04 2012

Keywords

Examples

			3.26425130263649690673153367843629490781491039315880...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Im[N[Log[I]/Log[GoldenRatio], 105]]] [[1]]
    RealDigits[Abs[Log[GoldenRatio,I]],10,120][[1]] (* Harvey P. Dale, Sep 22 2018 *)

Formula

Equals |Im(Log(i))/Log(A001622)|
Equals Pi/log(phi+1) = A000796/A202543. - Gleb Koloskov, Sep 28 2021

A377644 Decimal expansion of Li_3(2 - phi).

Original entry on oeis.org

4, 0, 2, 6, 8, 3, 9, 6, 2, 9, 5, 2, 1, 0, 9, 0, 2, 1, 1, 5, 9, 9, 5, 9, 4, 4, 8, 1, 8, 2, 5, 1, 1, 1, 4, 2, 2, 1, 9, 7, 3, 3, 8, 0, 7, 3, 7, 9, 3, 8, 3, 9, 5, 0, 1, 6, 9, 0, 8, 6, 9, 0, 2, 0, 9, 7, 1, 6, 0, 5, 0, 2, 1, 9, 7, 3, 3, 0, 9, 3, 3, 0, 6, 4, 3, 5, 6, 1, 8, 4, 5, 7, 8, 6, 6, 3, 6, 9, 0, 3
Offset: 0

Views

Author

Stefano Spezia, Nov 03 2024

Keywords

Examples

			0.402683962952109021159959448182511142219733807379...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 44.

Crossrefs

Programs

  • Mathematica
    RealDigits[PolyLog[3,2-GoldenRatio],10,100][[1]]

Formula

Equals 4*zeta(3)/5 + Pi^2*log(A132338)/15 - log(A132338)^3/12 (see Finch).
Equals Li_3(A094214^2) = 4*zeta(3)/5 + 2*zeta(2)*log(A132338)/5 - log(A132338)^3/12 (see Shamos).

A383659 Decimal expansion of phi + 2*log(phi), where phi is the golden ratio.

Original entry on oeis.org

2, 5, 8, 0, 4, 5, 7, 6, 3, 8, 8, 6, 9, 1, 0, 1, 7, 4, 3, 2, 0, 0, 1, 0, 4, 6, 6, 1, 2, 1, 4, 3, 7, 4, 9, 6, 3, 9, 9, 0, 6, 7, 7, 8, 4, 8, 5, 7, 7, 0, 8, 3, 9, 0, 1, 4, 5, 7, 4, 8, 4, 9, 6, 0, 3, 8, 5, 5, 8, 8, 1, 9, 8, 0, 3, 5, 3, 4, 5, 9, 9, 8, 5, 3, 1, 2, 2
Offset: 1

Views

Author

Kritsada Moomuang, Jun 11 2025

Keywords

Examples

			2.58045763886910174320...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[GoldenRatio + 2 * Log[GoldenRatio], 10, 100, 0][[1]]

Formula

Equals Integral_{x=0..1} sqrt(1/x + sqrt(1/x + sqrt(1/x + ...))) dx.
Equals Integral_{x=0..1} (1 + sqrt(1 + 4/x))/2 dx.
Equals A001622 + A202543.
Showing 1-8 of 8 results.