A202630
G.f.: exp( Sum_{n>=1} (3^n + A(x))^n * x^n/n ).
Original entry on oeis.org
1, 4, 62, 7646, 11346032, 173032723944, 25223251091617644, 34295314615208803660344, 429734276354140075492905291038, 49292144933883713910495181570024546094, 51546480948489890934875222750204184228031911158
Offset: 0
G.f.: A(x) = 1 + 4*x + 62*x^2 + 7646*x^3 + 11346032*x^4 + 173032723944*x^5 +...
where
log(A(x)) = (3 + A(x))*x + (3^2 + A(x))^2*x^2/2 + (3^3 + A(x))^3*x^3/3 + (3^4 + A(x))^4*x^4/4 +...
-
{a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,(3^m+A+x*O(x^n))^m*x^m/m)));polcoeff(A,n)}
A202669
G.f. satisfies: A(x) = exp( Sum_{n>=1} (A(x) + (-1)^n)^n * x^n/n ).
Original entry on oeis.org
1, 0, 2, 2, 12, 20, 96, 212, 898, 2354, 9266, 27070, 102094, 319930, 1177838, 3865762, 14050948, 47574460, 171886784, 594572676, 2143957648, 7528825924, 27156892364, 96412294088, 348314869652, 1246689890248, 4513958859208, 16257651642036, 59010423148052, 213586733348928
Offset: 0
G.f.: A(x) = 1 + 2*x^2 + 2*x^3 + 12*x^4 + 20*x^5 + 96*x^6 + 212*x^7 +...
where
log(A(x)) = (A(x) - 1)*x + (A(x) + 1)^2*x^2/2 + (A(x) - 1)^3*x^3/3 + (A(x) + 1)^4*x^4/4 +...
log(A(x)*(1-x*A(x))) = -1/(1 + x*A(x))*x + 1/(1 - x*A(x))^2*x^2/2 - 1/(1 + x*A(x))^3*x^3/3 + 1/(1 - x*A(x))^4*x^4/4 +...
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (A+(-1)^m+x*O(x^n))^m*x^m/m))); polcoeff(A, n)}
Showing 1-2 of 2 results.