cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202668 G.f. satisfies: A(x) = exp( Sum_{n>=1} (A(x) - (-1)^n)^n * x^n/n ).

Original entry on oeis.org

1, 2, 4, 12, 42, 158, 618, 2498, 10360, 43832, 188420, 820608, 3613212, 16057640, 71933768, 324482500, 1472604586, 6719100254, 30804229858, 141829955338, 655541387406, 3040527731790, 14147444737654, 66018910398574, 308898542610666, 1448867831911170
Offset: 0

Views

Author

Paul D. Hanna, Dec 22 2011

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 4*x^2 + 12*x^3 + 42*x^4 + 158*x^5 + 618*x^6 + ...
where
log(A(x)) = (A(x) + 1)*x + (A(x) - 1)^2*x^2/2 + (A(x) + 1)^3*x^3/3 + (A(x) - 1)^4*x^4/4 + ...
log( A(x)*(1-x*A(x)) ) = 1/(1 + x*A(x))*x + 1/(1 - x*A(x))^2*x^2/2 + 1/(1 + x*A(x))^3*x^3/3 + 1/(1 - x*A(x))^4*x^4/4 + ...
From _Paul D. Hanna_, Oct 11 2024: (Start)
SPECIFIC VALUES.
A(t) = 2 at t = 0.195782060076367892865630673522992184838101...
where 12*t^3 - 4*t^2 - 15*t + 3 = 0.
A(t) = 3/2 at t = 0.1528468026979892250300352740045422934687...
where 45*t^3 - 18*t^2 - 260*t + 40 = 0.
A(1/6) = 1.5975588141693553913621853542774164447766461118908...
A(1/7) = 1.4422077780342017637064340698606478883307441400444...
A(1/8) = 1.3558965312086216338851741626422486193364696459775...
A(1/9) = 1.2992876417963412242026519185070094965390617289384...
A(1/10) = 1.258828814568496961617240364573696812116531654741...
(End)
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (A - (-1)^m +x*O(x^n))^m * x^m/m))); polcoeff(A, n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. satisfies: A(x) = 1/(1-x*A(x)) * exp( Sum_{n>=1} 1/(1 - (-1)^n*x*A(x))^n * x^n/n ).
G.f. satisfies: A(x) = sqrt( (1 - (A(x)+1)^2*x^2)/(1 - (A(x)-1)^2*x^2) ) / (1 - (A(x)+1)*x).
G.f. satisfies: 0 = -(1+x) - x*A(x) + (1+x)*(1-x)^2*A(x)^2 - x*(1-x)^2*A(x)^3 - x^2*(1+x)*A(x)^4 + x^3*A(x)^5.
From Vaclav Kotesovec, Oct 11 2024: (Start)
a(n) ~ sqrt((-1 - s + (-1 - 2*r + 3*r^2)*s^2 + (-1 + 4*r - 3*r^2)*s^3 - r*(2 + 3*r)*s^4 + 3*r^2*s^5)/(1 - r*(1 + 3*s) + r^2*(-1 + 6*s - 6*s^2) + r^3*(1 - 3*s - 6*s^2 + 10*s^3))) / (2*sqrt(Pi) * n^(3/2) * r^(n - 1/2)), where r = 0.20089689587759865228481815120918189691453519374477284069915... and s = 2.3487742728380350386577466365052703249852809669846393564277... are positive real roots of the system of equations s^2*(1 + r^3*(-1 + s)^2*(1 + s)) = 1 + r^2*(-1 + s)^2*s^2 + r*(1 + s + s^2 + s^3) and 2*(-1 + r)^2*(1 + r)*s + 5*r^3*s^4 = r*(1 + 3*(-1 + r)^2*s^2 + 4*r*(1 + r)*s^3).
Numerically, a(n) ~ c * d^n / n^(3/2), where d = 1/r = 4.977677706923229216140896605827075562322447814212438341196056039... and c = 0.7100736662419384614471705442776864037581200760804364785319... (End)