A202671 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A202670 based on A000290 (the squares); by antidiagonals.
1, -1, 1, -18, 1, 1, -84, 116, -1, 1, -214, 1707, -470, 1, 1, -408, 9430, -17896, 1449, -1, 1, -666, 31877, -196046, 124782, -3724, 1, 1, -988, 81720, -1120768, 2530948, -656400, 8400, -1, 1, -1374, 175727, -4386774, 23536143
Offset: 1
Examples
The 1st principal submatrix (ps) of A202670 is {{1}} (using Mathematica matrix notation), with p(1)=1-x and zero-set {1}. ... The 2nd ps is {{1,4},{4,17}}, with p(2)=1-18x+x^2 and zero-set {0.556..., 17.944...}. ... The 3rd ps is {{1,4,9},{4,17,40},{9,40,98}}, with p(3)=1-84x+116x^2-x^3 and zero-set {0.012..., 0.716..., 115.271...}. ... Top of the array: 1...-1 1...-18.. ..1 1...-84... 116.....-1 1...-214...1707..-470...1
Links
- S.-G. Hwang, Cauchy's interlace theorem for eigenvalues of Hermitian matrices, American Mathematical Monthly 111 (2004) 157-159.
- A. Mercer and P. Mercer, Cauchy's interlace theorem and lower bounds for the spectral radius, International Journal of Mathematics and Mathematical Sciences 23, no. 8 (2000) 563-566.
Programs
-
Mathematica
f[k_] := k^2 U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]]; L[n_] := Transpose[U[n]]; F[n_] := CharacteristicPolynomial[L[n].U[n], x]; c[n_] := CoefficientList[F[n], x] TableForm[Flatten[Table[F[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] TableForm[Table[c[n], {n, 1, 10}]]
Comments