cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202671 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A202670 based on A000290 (the squares); by antidiagonals.

Original entry on oeis.org

1, -1, 1, -18, 1, 1, -84, 116, -1, 1, -214, 1707, -470, 1, 1, -408, 9430, -17896, 1449, -1, 1, -666, 31877, -196046, 124782, -3724, 1, 1, -988, 81720, -1120768, 2530948, -656400, 8400, -1, 1, -1374, 175727, -4386774, 23536143
Offset: 1

Views

Author

Clark Kimberling, Dec 22 2011

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1).

Examples

			The 1st principal submatrix (ps) of A202670 is {{1}} (using Mathematica matrix notation), with p(1)=1-x and zero-set {1}.
...
The 2nd ps is {{1,4},{4,17}}, with p(2)=1-18x+x^2 and zero-set {0.556..., 17.944...}.
...
The 3rd ps is {{1,4,9},{4,17,40},{9,40,98}}, with p(3)=1-84x+116x^2-x^3 and zero-set {0.012..., 0.716..., 115.271...}.
...
Top of the array:
1...-1
1...-18..  ..1
1...-84... 116.....-1
1...-214...1707..-470...1
		

Crossrefs

Cf. A202670, A000290, A202605 (the Fibonacci case).

Programs

  • Mathematica
    f[k_] := k^2
    U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    F[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[F[n], x]
    TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]
    TableForm[Table[c[n], {n, 1, 10}]]