A202710 Triangle read by rows. T(n, k) = coefficient of x^n in the Taylor expansion of [((1 - x - 2*x^2 - sqrt(1 - 2*x - 3*x^2))/(2*x^2))]^k.
1, 2, 1, 4, 4, 1, 9, 12, 6, 1, 21, 34, 24, 8, 1, 51, 94, 83, 40, 10, 1, 127, 258, 267, 164, 60, 12, 1, 323, 707, 825, 604, 285, 84, 14, 1, 835, 1940, 2488, 2084, 1185, 454, 112, 16, 1, 2188, 5337, 7389, 6890, 4527, 2106, 679, 144, 18, 1, 5798, 14728, 21726, 22120, 16325, 8838, 3479, 968, 180, 20, 1
Offset: 1
Examples
Triangle begins: 1, 2, 1, 4, 4, 1, 9, 12, 6, 1, 21, 34, 24, 8, 1, 51, 94, 83, 40, 10, 1, 127, 258, 267, 164, 60, 12, 1
Crossrefs
Cf. A001006.
Programs
-
Maple
# Uses function PMatrix from A357368. Adds a row and a column for n, k = 0. PMatrix(10, n -> simplify(hypergeom([(1-n)/2, -n/2], [2], 4))); # Peter Luschny, Oct 06 2022
-
Mathematica
T[n_, k_] := Binomial[n - 1, n - k] + k*Sum[Binomial[n, i]*Binomial[k + i, n - k - i]/(k + i), {i, 0, n - k - 1}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 06 2016, after Vladimir Kruchinin *)
-
Maxima
T(n,k):=sum((i*(-1)^(k-i)*binomial(k,i)*sum(binomial(j+i,-n+2*j)*binomial(n+i,j+i) ,j,floor(n/2),n))/(n+i),i,1,k);
-
Maxima
T(n,k):=+binomial(n-1,n-k)+k*sum((binomial(n,i)*binomial(k+i,n-k-i))/(k+i),i,0,n-k-1); /* Vladimir Kruchinin, Dec 06 2016*/
Formula
T(n,k) = Sum_{i=1..k} (i*(-1)^(k-i)*binomial(k,i)*Sum_{j=floor(n/2)..n} binomial(j+i,-n+2*j)*binomial(n+i,j+i))/(n+i).
T(n,k) = k*Sum_{i=0..n-k} binomial(k+i,n-k-i)*binomial(n,i)/(k+i). - Vladimir Kruchinin, Dec 09 2016
Comments