cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202710 Triangle read by rows. T(n, k) = coefficient of x^n in the Taylor expansion of [((1 - x - 2*x^2 - sqrt(1 - 2*x - 3*x^2))/(2*x^2))]^k.

Original entry on oeis.org

1, 2, 1, 4, 4, 1, 9, 12, 6, 1, 21, 34, 24, 8, 1, 51, 94, 83, 40, 10, 1, 127, 258, 267, 164, 60, 12, 1, 323, 707, 825, 604, 285, 84, 14, 1, 835, 1940, 2488, 2084, 1185, 454, 112, 16, 1, 2188, 5337, 7389, 6890, 4527, 2106, 679, 144, 18, 1, 5798, 14728, 21726, 22120, 16325, 8838, 3479, 968, 180, 20, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Dec 23 2011

Keywords

Comments

Triangle T(n,k)=
1. Riordan Array (1,((1-x-2*x^2-sqrt(1-2*x-3*x^2))/(2*x^2))) without first column.
2. Riordan Array (((1-x-2*x^2-sqrt(1-2*x-3*x^2))/(2*x)),((1-x-2*x^2-sqrt(1-2*x-3*x^2))/(2*x^2))) numbering triangle (0,0).
3. The leftmost column contains the Motzkin numbers A001006 without a(0).
The convolution triangle of the Motzkin numbers. - Peter Luschny, Oct 07 2022

Examples

			Triangle begins:
  1,
  2, 1,
  4, 4, 1,
  9, 12, 6, 1,
  21, 34, 24, 8, 1,
  51, 94, 83, 40, 10, 1,
  127, 258, 267, 164, 60, 12, 1
		

Crossrefs

Cf. A001006.

Programs

  • Maple
    # Uses function PMatrix from A357368. Adds a row and a column for n, k = 0.
    PMatrix(10, n -> simplify(hypergeom([(1-n)/2, -n/2], [2], 4))); # Peter Luschny, Oct 06 2022
  • Mathematica
    T[n_, k_] := Binomial[n - 1, n - k] + k*Sum[Binomial[n, i]*Binomial[k + i, n - k - i]/(k + i), {i, 0, n - k - 1}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 06 2016, after Vladimir Kruchinin *)
  • Maxima
    T(n,k):=sum((i*(-1)^(k-i)*binomial(k,i)*sum(binomial(j+i,-n+2*j)*binomial(n+i,j+i) ,j,floor(n/2),n))/(n+i),i,1,k);
    
  • Maxima
    T(n,k):=+binomial(n-1,n-k)+k*sum((binomial(n,i)*binomial(k+i,n-k-i))/(k+i),i,0,n-k-1); /* Vladimir Kruchinin, Dec 06 2016*/

Formula

T(n,k) = Sum_{i=1..k} (i*(-1)^(k-i)*binomial(k,i)*Sum_{j=floor(n/2)..n} binomial(j+i,-n+2*j)*binomial(n+i,j+i))/(n+i).
T(n,k) = k*Sum_{i=0..n-k} binomial(k+i,n-k-i)*binomial(n,i)/(k+i). - Vladimir Kruchinin, Dec 09 2016