cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202786 Number of 4 X 4 0..n arrays with row and column sums equal.

Original entry on oeis.org

1, 140, 5673, 89520, 790425, 4756140, 21841937, 82112704, 264639729, 754898668, 1950230969, 4641494832, 10309971465, 21592075596, 42980713761, 81851507456, 149924818657, 265300850124, 455235310153, 759857498672, 1237071456633, 1968924291180, 3069774212913, 4696644466368
Offset: 0

Views

Author

R. H. Hardin, Dec 24 2011

Keywords

Comments

From Robert Israel, May 03 2019: (Start)
a(n) is the number of integer lattice points in n*C where C is the polytope in R^(4 X 4) defined by Sum_{1<=i<=4} x_{i,j} = Sum_{1<=i<=4} x_{j,i} = Sum_{1<=i<=4} x_{i,1} for 1<=j<=4 and 0 <= x_{i,j} <= 1 for 1<=i,j<=4.
The vertices of this polytope have coordinates in {0,1/2,1} (an example of a vertex with non-integer coordinates is [0,1,1,1/2; 1,0,1,1/2; 1,1,0,1/2; 1/2,1/2,1/2,1]).
Therefore a(n) should be quasi-polynomial in n. (End)

Examples

			Some solutions for n=3
..2..2..1..3....2..1..2..1....3..2..1..0....1..3..2..2....0..3..2..2
..1..2..3..2....1..3..2..0....0..1..2..3....2..2..2..2....1..2..3..1
..3..1..3..1....2..1..1..2....1..1..1..3....2..1..2..3....3..2..1..1
..2..3..1..2....1..1..1..3....2..2..2..0....3..2..2..1....3..0..1..3
		

Crossrefs

Row n=4 of A202784.

Formula

Conjecture: a(n) = (29 + 3*(-1)^n)/32 + (34/7)*n + (7202/525)*n^2 + (4658/189)*n^3 + (118873/3780)*n^4 + (5321/180)*n^5 + (36827/1800)*n^6 + (1285/126)*n^7 + (17581/5040)*n^8 + (2789/3780)*n^9 + (2789/37800)*n^10. - Robert Israel, May 03 2019

Extensions

a(0)=1 prepended by Andrew Howroyd, Oct 14 2024