A202805 a(n) is the largest k in an n_nacci(k) sequence (Fibonacci(k) for n=2, tribonacci(k) for n=3, etc.) such that n_nacci(k) >= 2^(k-n-1).
6, 12, 25, 48, 94, 184, 363, 719, 1430, 2851, 5691, 11371, 22728, 45443, 90870, 181724, 363429, 726839, 1453658, 2907295, 5814566, 11629107
Offset: 2
Examples
For n=3, the tribonacci sequence is 0,0,1,1,2,4,7,...,149,274,504,... and the 13th term is 504 < 512 so a(n)=12 because 274 is greatest term >= 2^(12-3-1) = 256.
Programs
-
Maple
nAcci := proc(n,k) option remember ; if k <= n-2 then 0; elif k = n-1 then 1; else add( procname(n,i),i=k-n..k-1) ; end if; end proc: A202805 := proc(n) local k ; for k from n do if nAcci(n,k) < 2^(k-n-1) then return k-1; end if; end do: end proc: for n from 2 do print(n,A202805(n)) ; end do: # R. J. Mathar, Mar 11 2024
-
Mathematica
fib[n_, m_] := (Block[{nacci}, (Do[nacci[g]=0, {g, 0, m - 2}]; nacci[m-1]=1;nacci[p_] := (nacci[p]=Sum[nacci[h], {h, p-m, p-1}]);nacci[n])]); crossover[q_] := (Block[{$RecursionLimit=Infinity}, (k=0;While[fib[k+q+1, q]>=2^k, k++];k+q)]); Table[crossover[j], {j, 2, 12}]
-
Python
def nacci(n): # generator of n_nacci terms window = [0]*(n-1) + [1] yield from window while True: an = sum(window) yield an window = window[1:] + [an] def a(n): pow2 = 1 for k, t in enumerate(nacci(n)): if k > n + 1: pow2 <<= 1 if 0 < t < pow2: return k-1 print([a(n) for n in range(2, 12)]) # Michael S. Branicky, Jan 29 2025
Extensions
Edited by N. J. A. Sloane, May 20 2023
There seems to be an error in the Comment. See "History" tab. - N. J. A. Sloane, Jun 24 2023
Removed musing about what might define "complete" sequences. - R. J. Mathar, Mar 11 2024
a(17)-a(23) from Michael S. Branicky, Jan 29 2025
Comments