cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202821 Position of 6^n among 3-smooth numbers A003586.

Original entry on oeis.org

1, 5, 14, 26, 43, 64, 89, 119, 153, 191, 233, 279, 330, 385, 444, 507, 575, 646, 722, 802, 886, 975, 1067, 1164, 1266, 1371, 1481, 1595, 1713, 1835, 1961, 2092, 2227, 2366, 2509, 2657, 2809, 2965, 3125, 3289, 3458, 3630, 3807, 3989, 4174, 4364, 4558, 4756
Offset: 0

Views

Author

Zak Seidov, Dec 25 2011

Keywords

Examples

			a(0) = 1 because A003586(1) = 6^0 = 1.
a(1) = 5 because A003586(5) = 6^1 = 6.
a(2) = 14 because A003586(14) = 6^2 = 36.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Floor[Log[3, 6^n/2^i]] + 1, {i, 0, Log2[6^n]}]; Array[a, 50, 0] (* Amiram Eldar, Jul 15 2023 *)
  • Python
    # uses imports/function in A372401
    print(list(islice(A372401gen(p=3), 1000))) # Michael S. Branicky, Jun 06 2024
    
  • Python
    from sympy import integer_log
    def A202821(n): return 1+n*(n+1)+sum((m:=3**i).bit_length()+((1<Chai Wah Wu, Oct 22 2024

Formula

A003586(a(n)) = 6^n, for n >= 0.
a(n) ~ (log(6))^2/(log(3)*log(4))*n^2 = 2.1079...*n^2.