A202821 Position of 6^n among 3-smooth numbers A003586.
1, 5, 14, 26, 43, 64, 89, 119, 153, 191, 233, 279, 330, 385, 444, 507, 575, 646, 722, 802, 886, 975, 1067, 1164, 1266, 1371, 1481, 1595, 1713, 1835, 1961, 2092, 2227, 2366, 2509, 2657, 2809, 2965, 3125, 3289, 3458, 3630, 3807, 3989, 4174, 4364, 4558, 4756
Offset: 0
Keywords
Examples
a(0) = 1 because A003586(1) = 6^0 = 1. a(1) = 5 because A003586(5) = 6^1 = 6. a(2) = 14 because A003586(14) = 6^2 = 36.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Zak Seidov)
Programs
-
Mathematica
a[n_] := Sum[Floor[Log[3, 6^n/2^i]] + 1, {i, 0, Log2[6^n]}]; Array[a, 50, 0] (* Amiram Eldar, Jul 15 2023 *)
-
Python
# uses imports/function in A372401 print(list(islice(A372401gen(p=3), 1000))) # Michael S. Branicky, Jun 06 2024
-
Python
from sympy import integer_log def A202821(n): return 1+n*(n+1)+sum((m:=3**i).bit_length()+((1<
Chai Wah Wu, Oct 22 2024
Formula
A003586(a(n)) = 6^n, for n >= 0.
a(n) ~ (log(6))^2/(log(3)*log(4))*n^2 = 2.1079...*n^2.