cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202839 Number of stacks of length 1 in all 2ndary structures of size n.

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 16, 43, 110, 284, 733, 1886, 4853, 12486, 32121, 82647, 212699, 547552, 1410023, 3632260, 9360140, 24129284, 62224692, 160522287, 414246823, 1069376386, 2761502201, 7133442743, 18432633823, 47643696626, 123182434292, 318575889057, 824125660356
Offset: 0

Views

Author

Emeric Deutsch, Dec 25 2011

Keywords

Comments

For "secondary structure" and "stack" see the Hofacker et al. reference, p. 209.
Number of stacks of length 2 in all 2ndary structures of size n+2.
Number of stacks of length 3 in all 2ndary structures of size n+4.

Examples

			a(5)=6: representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv, ABvBA; they have 0,1,1,1,1,1,1,0 stacks of length 1, respectively.
		

Crossrefs

Programs

  • Maple
    g := z^2*(1-z^2)^2*S*(S-1)/(1-z+z^2-2*z^2*S): S := ((1-z+z^2-sqrt(1-2*z-z^2-2*z^3+z^4))*1/2)/z^2: gser := series(g, z = 0, 35): seq(coeff(gser, z, n), n = 0 .. 32);
  • Mathematica
    CoefficientList[Series[-(1 - x^2)^2 * ((1 - x) + (-1 + 2*x + x^3) / Sqrt[(1 - 3*x + x^2) * (1 + x + x^2)]) / (2*x^2), {x, 0, 40}], x] (* Vaclav Kotesovec, May 29 2022 *)

Formula

a(n) = Sum(k*A202838(n,k), k>=0).
a(n) = Sum(k*A202841(n+2,k), k>=0).
a(n) = Sum(k*A202843(n+4,k), k>=0).
G.f.: g(z) = z^2*(1-z^2)^2*S(S - 1)/(1 - z + z^2 -2*z^2*S), where S is defined by S = 1 + z*S + z^2*S(S-1) (the g.f. of the secondary structure numbers A004148).
a(n) ~ 5^(3/4) * phi^(2*n-3) / (2*sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, May 29 2022
D-finite with recurrence -(n+2)*(406*n-3981)*a(n) +(2022*n^2-15917*n-13552)*a(n-1) +4*(-402*n^2+2594*n+593)*a(n-2) +4*(-605*n^2+7719*n-23415)*a(n-3) +4*(-203*n^2-527*n+15295)*a(n-4) +2*(804*n^2-8404*n+14555)*a(n-5) +(2826*n^2-42913*n+153174)*a(n-6) -(1210*n-6753)*(n-10)*a(n-7)=0. - R. J. Mathar, Jul 26 2022