cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202846 Number of stacks of odd length in all 2ndary structures of size n.

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 16, 44, 113, 290, 749, 1930, 4966, 12776, 32870, 84577, 217665, 560328, 1442893, 3716837, 9577805, 24689612, 63667585, 164239124, 423824628, 1094065998, 2825169786, 7297681867, 18856458451, 48737762624, 126007604078, 325873570924, 842982118807
Offset: 0

Views

Author

Emeric Deutsch, Dec 26 2011

Keywords

Comments

For "secondary structure" and "stack" see the Hofacker et al. reference, p. 209.
Number of stacks of even length in all 2ndary structures of size n+2.

Examples

			a(5)=6: representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv, ABvBA; they have 0,1,1,1,1,1,1,0 stacks of odd length, respectively.
		

Crossrefs

Programs

  • Maple
    g := z^2*(1-z^2)*S*(S-1)/((1+z^2)*(1-z+z^2-2*z^2*S)): S := ((1-z+z^2-sqrt(1-2*z-z^2-2*z^3+z^4))*1/2)/z^2: gser := series(g, z = 0, 35): seq(coeff(gser, z, n), n = 0 .. 32);

Formula

a(n) = Sum(k*A202845(n,k), k>=0).
a(n) = Sum(k*A202848(n+2,k), k>=0).
a(n)+a(n-2) = A171854(n) (n>=2).
G.f.: g(z) = z^2*(1-z^2)^2*S(S - 1)/[(1+z^2)(1 - z + z^2 -2*z^2*S)], where S is defined by S = 1 + z*S + z^2*S(S-1) (the g.f. of the secondary structure numbers A004148).
Conjecture D-finite with recurrence +(n+2)*(13230*n^2-96611*n+147133)*a(n) +(-44206*n^3+292903*n^2-261197*n-341332)*a(n-1) +2*(17746*n^3-141629*n^2+231187*n+123600)*a(n-2) +2*(-26460*n^3+157889*n^2-64195*n-381418)*a(n-3) +2*(35492*n^3-320849*n^2+745453*n-240088)*a(n-4) +2*(-13230*n^3+98869*n^2-160610*n-79637)*a(n-5) +(48722*n^3-428591*n^2+982443*n-433110)*a(n-6) -(n-6)*(17746*n^2-68387*n+43705)*a(n-7)=0. - R. J. Mathar, Jul 26 2022