cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202856 Moments of the quadratic coefficient of the characteristic polynomial of a random matrix in SU(2) X SU(2) (inside USp(4)).

Original entry on oeis.org

1, 2, 5, 14, 44, 152, 569, 2270, 9524, 41576, 187348, 866296, 4092400, 19684576, 96156649, 476038222, 2384463044, 12067926920, 61641751124, 317469893176, 1647261806128, 8605033903456, 45228349510660, 239061269168056, 1270130468349904, 6780349241182112, 36355025167014224, 195725149445320160, 1057729059593103808
Offset: 0

Views

Author

N. J. A. Sloane, Dec 25 2011

Keywords

Crossrefs

Programs

  • Maple
    b:=n->coeff((x^2+1)^n, x, n); # A126869
    c:=n->b(n)/((n/2)+1); # A126120
    ch:=n->add(binomial(n, k)*2^(n-k)*c(k)^2, k=0..n); # A202856
    [seq(ch(n), n=0..30)];
  • Mathematica
    b[n_] := Coefficient[(x^2+1)^n, x, n]; (* A126869 *)
    c[n_] := b[n]/(n/2+1); (* A126120 *)
    ch[n_] := Sum[Binomial[n, k] 2^(n-k) c[k]^2, {k, 0, n}]; (* A202856 *)
    Table[ch[n], {n, 0, 30}] (* Jean-François Alcover, Aug 10 2018, translated from Maple *)

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*2^(n-k)*c(k)^2, where c() = A126120().
Conjecture: (n+2)^2*a(n) +2*(-3*n^2-5*n-1)*a(n-1) -4*(n-1)*(n-5)*a(n-2) +24*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Dec 04 2013 [ Maple's sumrecursion command applied to the above formula for a(n) produces this recurrence. - Peter Bala, Jul 06 2015 ]
a(n) ~ 2^(n-1) * 3^(n+3) / (Pi * n^3). - Vaclav Kotesovec, Jul 20 2019