A202871 Symmetric matrix based on the Lucas sequence, A000032, by antidiagonals.
1, 3, 3, 4, 10, 4, 7, 15, 15, 7, 11, 25, 26, 25, 11, 18, 40, 43, 43, 40, 18, 29, 65, 69, 75, 69, 65, 29, 47, 105, 112, 120, 120, 112, 105, 47, 76, 170, 181, 195, 196, 195, 181, 170, 76, 123, 275, 293, 315, 318, 318, 315, 293, 275, 123, 199, 445, 474, 510, 514
Offset: 1
Examples
Northwest corner: 1....3....4....7....11...18 3....10...15...25...40...65 4....15...26...43...69...112 7....25...43...75...120..195 11...40...69...120..196..318
Crossrefs
Cf. A202872.
Programs
-
Mathematica
s[k_] := LucasL[k]; U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]]; L = Transpose[U]; M = L.U; TableForm[M] m[i_, j_] := M[[i]][[j]]; Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}] Table[f[n], {n, 1, 12}] Table[Sqrt[f[n]], {n, 1, 12}] (* A027961 *) Table[m[1, j], {j, 1, 12}] (* A000032 *)
Comments