A202874 Symmetric matrix based on (1,2,3,5,8,13,...), by antidiagonals.
1, 2, 2, 3, 5, 3, 5, 8, 8, 5, 8, 13, 14, 13, 8, 13, 21, 23, 23, 21, 13, 21, 34, 37, 39, 37, 34, 21, 34, 55, 60, 63, 63, 60, 55, 34, 55, 89, 97, 102, 103, 102, 97, 89, 55, 89, 144, 157, 165, 167, 167, 165, 157, 144, 89, 144, 233, 254, 267, 270, 272, 270, 267, 254
Offset: 1
Examples
Northwest corner: 1....2....3....5....8....13 2....5....8....13...21...34 3....8....14...23...37...60 5....13...23...39...63...102 8....21...37...63...102..167
Crossrefs
Cf. A202875.
Programs
-
Mathematica
s[k_] := Fibonacci[k + 1]; U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]]; L = Transpose[U]; M = L.U; TableForm[M] m[i_, j_] := M[[i]][[j]]; Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}] Table[f[n], {n, 1, 12}] Table[Sqrt[f[n]], {n, 1, 12}] (* A001911 *) Table[m[1, j], {j, 1, 12}] (* A000045 *) Table[m[j, j], {j, 1, 12}] (* A119996 *) Table[m[j, j + 1], {j, 1, 12}] (* A180664 *) Table[Sum[m[i, n + 1 - i], {i, 1, n}], {n, 1, 12}] (* A002940 *)
Comments