A202882 Number of n X 1 0..2 arrays with every nonzero element less than or equal to some horizontal or vertical neighbor.
1, 3, 9, 22, 51, 121, 292, 704, 1691, 4059, 9749, 23422, 56268, 135166, 324692, 779977, 1873673, 4500958, 10812237, 25973244, 62393157, 149881402, 360046432, 864906711, 2077686532, 4991036946, 11989513056, 28801314179, 69186771332
Offset: 1
Keywords
Examples
Some solutions for n=5 ..2....2....1....0....2....2....0....1....0....1....1....0....2....1....0....2 ..2....2....1....1....2....2....2....1....2....2....1....0....2....2....1....2 ..0....1....1....2....0....2....2....0....2....2....1....1....1....2....1....0 ..0....1....1....2....1....1....2....0....0....0....2....1....2....2....2....2 ..0....0....1....2....1....1....1....0....0....0....2....1....2....0....2....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- T. Mansour and M. Shattuck, Counting Peaks and Valleys in a Partition of a Set, J. Int. Seq. 13 (2010), 10.6.8, Lemma 2.1, k=3, one peak.
Crossrefs
Column 1 of A202889.
Formula
Empirical: a(n) = 3*a(n-1) -3*a(n-2) +4*a(n-3) -a(n-4) +a(n-5).
Empirical: G.f.: -x*(1+3*x^2+x^4)/(-1+3*x-3*x^2+4*x^3-x^4+x^5). - R. J. Mathar, Jul 09 2017