A232023 T(n,k)=Number of nXk 0..2 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.
3, 3, 9, 9, 22, 27, 22, 66, 121, 81, 51, 212, 852, 704, 243, 121, 716, 6443, 11517, 4059, 729, 292, 2447, 52680, 196196, 156913, 23422, 2187, 704, 8312, 429976, 3668759, 6129361, 2125749, 135166, 6561, 1691, 28118, 3466702, 66962048, 266779524
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..0..0....2..0..0..0....0..0..0..0....2..0..0..1....0..0..0..1 ..2..0..0..1....0..2..2..2....2..2..1..2....0..0..0..2....0..0..0..0 ..0..0..0..0....0..0..1..2....0..0..0..2....2..0..0..0....2..2..0..0 ..1..0..0..0....0..1..1..1....0..0..0..0....2..0..0..0....0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..262
Formula
Empirical for column k:
k=1: a(n) = 3*a(n-1)
k=2: a(n) = 3*a(n-1) +13*a(n-2) +16*a(n-3) +7*a(n-4) +a(n-5)
k=3: [order 7] for n>8
k=4: [order 18] for n>19
k=5: [order 41] for n>42
k=6: [order 79] for n>81
Empirical for row n:
n=1: a(n) = 3*a(n-1) -3*a(n-2) +4*a(n-3) -a(n-4) +a(n-5) for n>6
n=2: [order 17] for n>18
n=3: [order 61] for n>64
Comments