A202941 For n>=0, let n!^(2)=A202367(n+1) and, for 0<=m<=n, C^(2)(n,m)=n!^(2)/(m!^(2)*(n-m)!^(2)). The sequence gives triangle of numbers C^(2)(n,m) with rows of length n+1.
1, 1, 1, 1, 10, 1, 1, 21, 21, 1, 1, 20, 42, 20, 1, 1, 11, 22, 22, 11, 1, 1, 2730, 3003, 2860, 3003, 2730, 1, 1, 1, 273, 143, 143, 273, 1, 1
Offset: 0
Examples
Triangle begins n/m.|..0.....1.....2.....3.....4.....5.....6.....7 ================================================== .0..|..1 .1..|..1.....1 .2..|..1....10.....1 .3..|..1....21 ...21.....1 .4..|..1....20....42....20.....1 .5..|..1....11....22....22....11.....1 .6..|..1..2730..3003..2860..3003..2730.....1 .7..|..1.....1...273...143...143...273.....1.....1 .8..|
Comments