A202970 Symmetric matrix based on A001911, by antidiagonals.
1, 3, 3, 6, 10, 6, 11, 21, 21, 11, 19, 39, 46, 39, 19, 32, 68, 87, 87, 68, 32, 53, 115, 153, 167, 153, 115, 53, 87, 191, 260, 296, 296, 260, 191, 87, 142, 314, 433, 505, 528, 505, 433, 314, 142, 231, 513, 713, 843, 904, 904, 843, 713, 513, 231, 375, 835
Offset: 1
Examples
Northwest corner: 1...3...6....11...19 3...10..21...39...68 6...21..46...87...153 11..39..87...167..296 19..68..153..296..528
Programs
-
Mathematica
s[k_] := -2 + Fibonacci[k + 3]; U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]]; L = Transpose[U]; M = L.U; TableForm[M] m[i_, j_] := M[[i]][[j]]; Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}] Table[f[n], {n, 1, 12}] Table[Sqrt[f[n]], {n, 1, 12}] (* A001891 *) Table[m[1, j], {j, 1, 12}] (* A001911 *) Table[m[j, j], {j, 1, 12}] Table[m[j, j + 1], {j, 1, 12}] Table[Sum[m[i, n + 1 - i], {i, 1, n}], {n, 1, 12}] (* A001925 *)
Comments