cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203002 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A203001; by antidiagonals.

Original entry on oeis.org

1, -1, 1, -3, 1, 1, -14, 21, -1, 1, -29, 162, -120, 1, 1, -48, 540, -1736, 844, -1, 1, -71, 1267, -8091, 17022, -5664, 1, 1, -98, 2475, -24908, 105503, -158690, 39045, -1, 1, -129, 4312, -60994, 408508, -1250056, 1416673
Offset: 1

Views

Author

Clark Kimberling, Dec 27 2011

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1).

Examples

			Top of the array:
1...-1
1...-3....1
1...-14...21....-1
1...-29...162...-120...1
		

Crossrefs

Programs

  • Mathematica
    f[k_] := Fibonacci[k]^2;
    U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    F[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[F[n], x]
    TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]
    TableForm[Table[c[n], {n, 1, 10}]]