cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A203010 (n-1)-st elementary symmetric function of first n Lucas numbers, starting with L(1)=1.

Original entry on oeis.org

1, 4, 19, 145, 1679, 31146, 919866, 43716030, 3345087696, 413168662224, 82432477483344, 26585428576089600, 13864587294260493504, 11694921751248976025856, 15957837208927564640940096, 35227081534568618432596098240
Offset: 1

Views

Author

Clark Kimberling, Dec 29 2011

Keywords

Comments

From R. J. Mathar, Oct 01 2016 (Start):
The k-th elementary symmetric functions of the A000204(j), j=1..n, form a triangle T(n,k), 0<=k<=n, n>=0:
1
1 1
1 4 3
1 8 19 12
1 15 75 145 84
1 26 240 970 1679 924
1 44 708 5290 19139 31146 16632
1 73 1984 25822 172549 586177 919866 482328
1 120 5415 119070 1386183 8695980 28470185 43716030 22669416
This here is the first subdiagonal. The diagonal is A070825. The 2nd column is A027961. (End)

Crossrefs

Cf. A203009.

Programs

  • Mathematica
    f[k_] := LucasL[k]; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}] (* A203010 *)
Showing 1-1 of 1 results.