A203011 (n-1)-st elementary symmetric function of {1,3,7,15,31,63,...-1+2^n}.
1, 4, 31, 486, 15381, 978768, 124918731, 31932406170, 16337382642945, 16723323142761060, 34243057328337866295, 140246638967945496322350, 1148847521944847479468879725, 18822284044001939139425413111800, 616761496621711735518439444437389475
Offset: 1
Keywords
Links
- Clark Kimberling, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A122743.
Programs
-
Maple
SymmPolyn := proc(L::list,n::integer) local c,a,sel; a :=0 ; sel := combinat[choose](nops(L),n) ; for c in sel do a := a+mul(L[e],e=c) ; end do: a; end proc: A203011 := proc(n) local L,k ; L := [seq(2^k-1,k=1..n)] ; SymmPolyn(L,n-1) ; end proc: # R. J. Mathar, Sep 23 2016
-
Mathematica
f[k_] := -1 + 2^k; t[n_] := Table[f[k], {k, 1, n}] a[n_] := SymmetricPolynomial[n - 1, t[n]] Table[a[n], {n, 1, 16}] (* A203011 *) Table[Product[2^k-1,{k,1,n}] * Sum[1/(2^k-1),{k,1,n}],{n,1,16}] (* Vaclav Kotesovec, Sep 06 2014 *)
Formula
a(n) = c * 2^(n*(n+1)/2), where c = A048651 * A065442 = 0.4639944324508904477884... . - Vaclav Kotesovec, Oct 10 2016