cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203011 (n-1)-st elementary symmetric function of {1,3,7,15,31,63,...-1+2^n}.

Original entry on oeis.org

1, 4, 31, 486, 15381, 978768, 124918731, 31932406170, 16337382642945, 16723323142761060, 34243057328337866295, 140246638967945496322350, 1148847521944847479468879725, 18822284044001939139425413111800, 616761496621711735518439444437389475
Offset: 1

Views

Author

Clark Kimberling, Dec 29 2011

Keywords

Crossrefs

Cf. A122743.

Programs

  • Maple
    SymmPolyn := proc(L::list,n::integer)
        local c,a,sel;
        a :=0 ;
        sel := combinat[choose](nops(L),n) ;
        for c in sel do
            a := a+mul(L[e],e=c) ;
        end do:
        a;
    end proc:
    A203011 := proc(n)
        local L,k ;
        L := [seq(2^k-1,k=1..n)] ;
        SymmPolyn(L,n-1) ;
    end proc: # R. J. Mathar, Sep 23 2016
  • Mathematica
    f[k_] := -1 + 2^k; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}] (* A203011 *)
    Table[Product[2^k-1,{k,1,n}] * Sum[1/(2^k-1),{k,1,n}],{n,1,16}] (* Vaclav Kotesovec, Sep 06 2014 *)

Formula

a(n) = c * 2^(n*(n+1)/2), where c = A048651 * A065442 = 0.4639944324508904477884... . - Vaclav Kotesovec, Oct 10 2016