cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A122743 Number of normalized polynomials of degree n in GF(2)[x,y].

Original entry on oeis.org

1, 6, 56, 960, 31744, 2064384, 266338304, 68451041280, 35115652612096, 35993612646875136, 73750947497819242496, 302157667927362455470080, 2475577847115856892504571904, 40562343327224770087344704323584, 1329187430965708569562959165777772544
Offset: 0

Views

Author

N. J. A. Sloane, Aug 13 2008

Keywords

Comments

a(n) = n-th elementary symmetric function in n+1 variables evaluated at {2,4,8,16,...,2^(n+1)}; see Mathematica program.
a(n) is the number of simple labeled graphs on {1,2,...,n+2} such that the vertex 1 is not isolated. - Geoffrey Critzer, Sep 12 2013
a(n) is the HANKEL transform of the large Schröder numbers A006318(n+2). - Emanuele Munarini, Sep 14 2017

Examples

			Let esp abbreviate "elementary symmetric polynomial".  Then
0th esp of {2} is 1.
1st esp of {2,4} is 2+4 = 6.
2nd esp of {2,4,8} is 2*4 + 2*8 + 4*8 = 56.
		

References

  • Joachim von zur Gathen, Alfredo Viola, and Konstantin Ziegler, Counting reducible, powerful, and relatively irreducible multivariate polynomials over finite fields, in: A. López-Ortiz (Ed.), LATIN 2010: Theoretical Informatics, Proceedings of the 9th Latin American Symposium, Oaxaca, Mexico, April 19-23, 2010, in: Lecture Notes in Comput. Sci., vol. 6034, Springer, Berlin, Heidelberg, 2010, pp. 243-254 (Extended Abstract). Final version to appear in SIAM J. Discrete Math.

Crossrefs

Row sums of powers of two triangles A000079.
Equals A000225(n+1)*2^A000217(n).

Programs

  • Magma
    [2^((n+1)*(n+2) div 2) - 2^(n*(n+1) div 2): n in [0..30]]; // Vincenzo Librandi, Oct 01 2015
  • Maple
    seq(2^((n*(1+n))/2)*(2^(1+n)-1), n=0..14); # Peter Luschny, Sep 19 2017
  • Mathematica
    f[k_] := 2^k; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}] (* A122743 *)
    (* Clark Kimberling, Dec 29 2011 *)
  • PARI
    a(n) = 2^((n+1)*(n+2)/2) - 2^(n*(n+1)/2);
    vector (100, n, a(n-1)) \\ Altug Alkan, Sep 30 2015
    

Formula

a(n) = 2^((n+1)(n+2)/2) - 2^(n(n+1)/2). - Paul D. Hanna, Apr 08 2009
E.g.f.: d(G(2x)-G(x))/dx where G(x) is the e.g.f. for A006125. - Geoffrey Critzer, Sep 12 2013
From Emanuele Munarini, Sep 14 2017: (Start)
(2^(n+1)-1)*a(n+1) - 2^(n+1)*(2^(n+2)-1)*a(n) = 0.
a(n+1) - (2^(n+2)+1)*a(n) = 2^(binomial(n+1,2)).
a(n+2) - (5*2^(n+1)+1)*a(n+1) + 2^(n+1)*(2^(n+2)+1)*a(n) = 0. (End)

Extensions

Edited, terms and links added by Johannes W. Meijer, Oct 10 2010
Comments corrected, reference added, and example edited by Konstantin Ziegler, Dec 04 2012
a(14) from Vincenzo Librandi, Oct 01 2015

A127850 a(n)=(2^n-1)*2^(n(n-1)/2)/(2^(n-1)).

Original entry on oeis.org

0, 1, 3, 14, 120, 1984, 64512, 4161536, 534773760, 137170518016, 70300024700928, 72022409665839104, 147537923792657448960, 604389122831019749146624, 4951457925686617442302820352
Offset: 0

Views

Author

Paul Barry, Feb 02 2007

Keywords

Comments

To base 2, this is given by A127851.
a(n)=(n-1)-st elementary symmetric function of {1,2,4,6,16,...,2^(n-1)}; see Mathematica program. - Clark Kimberling, Dec 29 2011
With offset = 1: the number of simple labeled graphs on n vertices in which vertex 1 or vertex 2 is isolated (or both). - Geoffrey Critzer, Dec 27 2012
HANKEL transform of A001003(n+2) (= [3, 11, 45, ...]) is a(n+2) (= [3, 14, 120, ...]). - Michael Somos, May 19 2013

Examples

			G.f. = x + 3*x^2 + 14*x^3 + 120*x^4 + 1984*x^5 + 64512*x^6 + 4161536*x^7 + ...
		

Crossrefs

Programs

  • Magma
    [2^Binomial( n-1, 2) * (2^n - 1):n in [0..30]]; // Vincenzo Librandi, Aug 31 2014
  • Mathematica
    f[k_] := 2^(k - 1); t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}]  (* A127850 *)
    (* Clark Kimberling, Dec 29 2011 *)
    a[ n_] := 2^Binomial[ n - 1, 2] (2^n - 1); (* Michael Somos, Aug 30 2014 *)
    Table[2^Binomial[n - 1, 2] (2^n - 1), {n, 0, 30}] (* Vincenzo Librandi, Aug 31 2014 *)
    Table[(2^n-1) (2^((n(n-1))/2))/2^(n-1),{n,0,20}] (* Harvey P. Dale, Sep 02 2025 *)
  • PARI
    {a(n) = 2^binomial( n-1, 2) * (2^n - 1)}; /* Michael Somos, Aug 30 2014 */
    

Formula

a(n) = 2^C(n,2)*(2^n-1)/2^(n-1).
a(-n) = -(4^n) * a(n) for all n in Z. - Michael Somos, Aug 30 2014
0 = +a(n)*(-a(n+2) + a(n+3)) + a(n+1)*(2*a(n+1) - 6*a(n+2) - 4*a(n+3)) + a(n+2)*(+8*a(n+2)) for all n in Z. - Michael Somos, Aug 30 2014
0 = +a(n)*a(n+2)*(-a(n) - 4*a(n+2)) + a(n)*a(n+1)*(+2*a(n+1) + 10*a(n+2)) + a(n+1)^2*(-24*a(n+1) + 8*a(n+2)) for all n in Z. - Michael Somos, Aug 30 2014

A204243 Determinant of the n-th principal submatrix of A204242.

Original entry on oeis.org

1, 2, 11, 144, 4149, 251622, 31340799, 7913773980, 4024015413705, 4106387069191890, 8395359475529822355, 34357677843892688699400, 281336437060919094044274525, 4608419756389534634440592965950, 150992374805715685629827976712244775
Offset: 1

Views

Author

Clark Kimberling, Jan 13 2012

Keywords

Crossrefs

Programs

  • Maple
    f:= n -> (1 - add(1/(2^i-1),i=2..n))*mul(2^i-1,i=2..n):
    seq(f(n),n=1..30); # Robert Israel, Nov 30 2015
  • Mathematica
    f[i_, j_] := 0; f[1, j_] := 1; f[i_, 1] := 1; f[i_, i_] := 2^i - 1;
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 12}, {i, 1, n}]]     (* A204242 *)
    Table[Det[m[n]], {n, 1, 15}]  (* A204243 *)
    Permanent[m_] :=
      With[{a = Array[x, Length[m]]},
       Coefficient[Times @@ (m.a), Times @@ a]];
    Table[Permanent[m[n]], {n, 1, 15}]   (* A203011 *)
  • PARI
    vector(20, n, matdet(matrix(n, n, i, j, if(i==1, 1, if(j==1, 1, if(i==j, 2^i-1)))))) \\ Colin Barker, Nov 27 2015

Formula

a(n) = (1 - Sum_{k=2..n} 1/(2^k-1)) * Product_{k=2..n} (2^k-1) = 2*A005329(n) - A203011(n). - Robert Israel, Nov 30 2015

A204242 Infinite symmetric matrix given by f(i,1)=1, f(1,j)=1, f(i,i)=2^i-1 and f(i,j)=0 otherwise, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 0, 0, 1, 1, 0, 7, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 15, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 31, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 63, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 127, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Clark Kimberling, Jan 13 2012

Keywords

Examples

			Northwest corner:
1 1 1 1
1 3 0 0
1 0 7 0
1 0 0 15
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N)
    V:= Vector(N):
    V[[seq(k*(k+1)/2, k= 1..floor((sqrt(8*N+1)-1)/2))]]:= 1:
    V[[seq(1+k*(k+1)/2, k=1..floor((sqrt(8*N-7)-1)/2))]]:= 1:
    V[[seq(1+2*k+2*k^2, k=0..floor((sqrt(2*N-1)-1)/2))]]:=
        :
    convert(V,list); # Robert Israel, Nov 30 2015
  • Mathematica
    f[i_, j_] := 0; f[1, j_] := 1; f[i_, 1] := 1; f[i_, i_] := 2^i - 1;
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 12}, {i, 1, n}]]     (* A204242 *)
    Table[Det[m[n]], {n, 1, 15}]  (* A204243 *)
    Permanent[m_] :=
      With[{a = Array[x, Length[m]]},
       Coefficient[Times @@ (m.a), Times @@ a]];
    Table[Permanent[m[n]], {n, 1, 15}]   (* A203011 *)

Formula

From Robert Israel, Nov 30 2015: (Start)
a(k*(k+1)/2) = a(1 + k*(k+1)/2) = 1.
a(2*k^2 + 2*k + 1) = 2^(k+1) - 1.
a(n) = 0 otherwise. (End)

Extensions

Name edited by Robert Israel, Nov 30 2015

A342186 Triangle read by rows, matrix inverse of A139382.

Original entry on oeis.org

1, -1, 1, 3, -4, 1, -21, 31, -11, 1, 315, -486, 196, -26, 1, -9765, 15381, -6562, 1002, -57, 1, 615195, -978768, 428787, -69688, 4593, -120, 1, -78129765, 124918731, -55434717, 9279163, -652999, 19833, -247, 1
Offset: 1

Views

Author

John Keith, Mar 04 2021

Keywords

Comments

This triangle appears to be the q-analog of A008275 (Stirling numbers of the first kind) for q=2. However, A333142 has a similar definition.
Row sums of unsigned triangle are A006125 with offset 1.
|T(n,k)| is the number of descent free digraphs on [n] containing exactly k source nodes. A descent in a digraph is a pair of vertices s->t such that s>t. A descent free digraph is necessarily acyclic. A source in an acyclic digraph is a node with indegree 0. - Geoffrey Critzer, Mar 05 2025

Examples

			The triangle begins:
           1;
          -1,         1;
           3,        -4,         1;
         -21,        31,       -11,       1;
         315,      -486,       196,     -26,       1;
       -9765,     15381,     -6562,    1002,     -57,     1;
      615195,   -978768,    428787,  -69688,    4593,  -120,    1;
   -78129765, 124918731, -55434717, 9279163, -652999, 19833, -247, 1;
  ...
		

Crossrefs

Cf. A008275, A139382, A333142, A333143, A006125 (row sums).
Columns of unsigned triangle: A005329, A203011, A000295, A203242.

Programs

  • Maple
    A342186 := proc(n, k) if n = 1 and k = 1 then 1 elif k > n or k < 1 then 0 else
    A342186(n-1, k-1) - (2^(n-1) - 1) * A342186(n-1, k) fi end:
    for n from 1 to 8 do seq(A342186(n, k), k = 1..n) od; # Peter Luschny, Jun 28 2022
  • Mathematica
    T[1, 1] := 1; T[n_, k_] := T[n, k] = If[k > n || k < 1, 0, T[n - 1, k - 1] - (2^(n - 1) - 1)*T[n - 1, k]]; Table[T[n, k], {n, 1, 8}, {k, 1, n}] (* after G. C. Greubel's program for A139382 *)
  • PARI
    mat(nn) = my(m = matrix(nn, nn)); for (n=1, nn, for(k=1, nn, m[n,k] = if (n==1, if (k==1, 1, 0), if (k==1, 1, (2^k-1)*m[n-1, k] + m[n-1, k-1])););); m; \\ A139382
    tabl(nn) = 1/mat(nn); \\ Michel Marcus, Mar 18 2021

Formula

T(n,k) = T(n-1,k-1) - (2^(n-1)-1) * T(n-1,k), n, k >= 1, T(1, 1) = 1, T(n, 0) = 0.
For unsigned triangle, T(n, 1) = A005329(n-1); T(n, 2) = A203011(n-1); T(n, n-1) = A000295(n+1); T(n, n-2) = A203242(n-1).
T(n,k) = Sum_{j=k..n} (-1)^(n-j)*2^binomial(n-j,2)*qBinomial(n,j,2)*binomial(j,k), where qBinomial(n,k,2) is A022166(n,k). - Fabian Pereyra, Feb 08 2024
Showing 1-5 of 5 results.