cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A204444 Permanent of the n-th principal submatrix of A204443.

Original entry on oeis.org

1, 1, 2, 9, 34, 140, 672, 4752, 32304, 230832, 1780704, 17927568, 175473216, 1780206336, 18988867584, 248341303296, 3173837230080, 41713375334400, 568818754560000, 9150176586240000, 144343174487040000, 2329812142295040000
Offset: 1

Views

Author

Clark Kimberling, Jan 15 2012

Keywords

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Floor[(i + j + 3)/4] - Floor[(i + j)/4];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 14}, {i, 1, n}]]   (* A204443 *)
    Permanent[m_] :=
      With[{a = Array[x, Length[m]]},
       Coefficient[Times @@ (m.a), Times @@ a]];
    Table[Permanent[m[n]], {n, 1, 22}]    (* A204444 *)

A204242 Infinite symmetric matrix given by f(i,1)=1, f(1,j)=1, f(i,i)=2^i-1 and f(i,j)=0 otherwise, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 0, 0, 1, 1, 0, 7, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 15, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 31, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 63, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 127, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Clark Kimberling, Jan 13 2012

Keywords

Examples

			Northwest corner:
1 1 1 1
1 3 0 0
1 0 7 0
1 0 0 15
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N)
    V:= Vector(N):
    V[[seq(k*(k+1)/2, k= 1..floor((sqrt(8*N+1)-1)/2))]]:= 1:
    V[[seq(1+k*(k+1)/2, k=1..floor((sqrt(8*N-7)-1)/2))]]:= 1:
    V[[seq(1+2*k+2*k^2, k=0..floor((sqrt(2*N-1)-1)/2))]]:=
        :
    convert(V,list); # Robert Israel, Nov 30 2015
  • Mathematica
    f[i_, j_] := 0; f[1, j_] := 1; f[i_, 1] := 1; f[i_, i_] := 2^i - 1;
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 12}, {i, 1, n}]]     (* A204242 *)
    Table[Det[m[n]], {n, 1, 15}]  (* A204243 *)
    Permanent[m_] :=
      With[{a = Array[x, Length[m]]},
       Coefficient[Times @@ (m.a), Times @@ a]];
    Table[Permanent[m[n]], {n, 1, 15}]   (* A203011 *)

Formula

From Robert Israel, Nov 30 2015: (Start)
a(k*(k+1)/2) = a(1 + k*(k+1)/2) = 1.
a(2*k^2 + 2*k + 1) = 2^(k+1) - 1.
a(n) = 0 otherwise. (End)

Extensions

Name edited by Robert Israel, Nov 30 2015

A377278 Denominators in a harmonic triangle; q-analog of A126615, here q = 2.

Original entry on oeis.org

1, 3, 3, 3, 21, 7, 3, 21, 105, 15, 3, 21, 105, 465, 31, 3, 21, 105, 465, 1953, 63, 3, 21, 105, 465, 1953, 8001, 127, 3, 21, 105, 465, 1953, 8001, 32385, 255, 3, 21, 105, 465, 1953, 8001, 32385, 130305, 511, 3, 21, 105, 465, 1953, 8001, 32385, 130305, 522753, 1023
Offset: 1

Views

Author

Werner Schulte, Oct 22 2024

Keywords

Comments

The harmonic triangle uses the terms of this sequence as denominators, numerators = 1. The inverse of the harmonic triangle has entries -2^(n-k-1) for 1<=k
Conjecture: Row sums of the harmonic triangle are A204243(n) / A005329(n).

Examples

			Triangle T(n, k) for 1 <= k <= n starts:
n\ k :  1   2    3    4     5     6      7       8       9    10
================================================================
   1 :  1
   2 :  3   3
   3 :  3  21    7
   4 :  3  21  105   15
   5 :  3  21  105  465    31
   6 :  3  21  105  465  1953    63
   7 :  3  21  105  465  1953  8001    127
   8 :  3  21  105  465  1953  8001  32385     255
   9 :  3  21  105  465  1953  8001  32385  130305     511
  10 :  3  21  105  465  1953  8001  32385  130305  522753  1023
  etc.
The harmonic triangle starts:
  [1]  1/1
  [2]  1/3   1/3
  [3]  1/3  1/21    1/7
  [4]  1/3  1/21  1/105   1/15
  [5]  1/3  1/21  1/105  1/465    1/31
  [6]  1/3  1/21  1/105  1/465  1/1953  1/63
  etc.
The inverse of the harmonic triangle starts:
  [1]    1
  [2]   -1   3
  [3]   -2  -1   7
  [4]   -4  -2  -1  15
  [5]   -8  -4  -2  -1  31
  [6]  -16  -8  -4  -2  -1  63
  etc.
		

Crossrefs

Programs

  • PARI
    T(n,k)=if(k
    				

Formula

T(n, k) = (2^k - 1) * (2^(k+1) - 1) for 1 <= k < n; T(n, n) = 2^n - 1.
Sum_{k=1..n} 2^(k-1) / T(n, k) = 1.
Product_{k=1..n} T(n, k)^((-1)^k) = 1.
Row sums are n + 4 * (2^n - 1) * (2^(n-1) - 1) / 3 = n + 4 * A006095(n).
G.f.: x*y*(1 + 2*x - 4*x*y + 4*x^2*y)/((1 - x)*(1 - x*y)(1 - 2*x*y)*(1 - 4*x*y)). - Stefano Spezia, Oct 23 2024
Showing 1-3 of 3 results.