A203077 Alternating-parity rearrangement of natural numbers: a(n) is the smallest number such that a(n-1)^2 + a(n)^2 is odd and composite.
1, 8, 9, 2, 11, 10, 5, 12, 3, 4, 7, 6, 13, 14, 17, 16, 15, 18, 19, 22, 21, 20, 25, 30, 27, 24, 23, 26, 29, 28, 31, 32, 35, 38, 33, 34, 37, 36, 39, 42, 41, 40, 45, 44, 43, 46, 47, 50, 49, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 63, 62, 61, 66, 67, 64, 65
Offset: 1
Keywords
Examples
1^2 + 8^2 = 65 composite, 8^2 + 9^2 = 145 composite, 9^2 + 2^2 = 85 composite.
Crossrefs
Cf. A203069.
Programs
-
Mathematica
f[s_List] := Block[{k = If[ OddQ[ s[[-1]]], 2, 3], m = s[[-1]]}, While[a = k^2 + m^2; MemberQ[s, k] || PrimeQ[a] || EvenQ[a], k += 2]; Append[s, k]]; Nest[f, {1}, 70] (* Robert G. Wilson v, Jan 02 2012 *)
Comments