A203094 Number of nX1 0..3 arrays with every nonzero element less than or equal to some horizontal or vertical neighbor.
1, 4, 16, 50, 144, 422, 1268, 3823, 11472, 34350, 102896, 308419, 924532, 2771101, 8305373, 24892609, 74608516, 223618304, 670231838, 2008825312, 6020872062, 18045827096, 54087163859, 162110668160, 485879938474, 1456284886944
Offset: 1
Keywords
Examples
Some solutions for n=5 ..3....1....1....1....1....3....3....1....0....1....1....3....2....0....3....3 ..3....1....1....2....2....3....3....1....2....1....1....3....2....2....3....3 ..1....3....1....2....3....3....1....0....3....0....2....3....3....3....3....0 ..3....3....2....1....3....3....3....0....3....0....2....3....3....3....2....1 ..3....0....2....0....3....0....3....0....0....0....1....0....1....3....1....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- T. Mansour and M. Shattuck, Counting Peaks and Valleys in a Partition of a Set, J. Int. Seq. 13 (2010), 10.6.8, Lemma 2.1, k=4, no peak.
Formula
Empirical: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7).
Empirical: G.f.: -x*(1+6*x^2+5*x^4+x^6) / (-1+4*x-6*x^2+10*x^3-5*x^4+6*x^5-x^6+x^7). - R. J. Mathar, May 17 2014