cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203138 Decimal expansion of Gamma(1/24).

Original entry on oeis.org

2, 3, 4, 6, 2, 4, 8, 7, 6, 9, 3, 1, 8, 3, 3, 1, 9, 8, 8, 1, 3, 8, 5, 7, 1, 1, 4, 6, 9, 5, 8, 6, 2, 9, 4, 9, 3, 0, 4, 3, 3, 3, 6, 5, 1, 3, 4, 0, 0, 4, 6, 1, 0, 1, 6, 4, 7, 3, 9, 7, 9, 8, 4, 7, 5, 8, 2, 5, 1, 5, 0, 1, 1, 4, 0, 1, 8, 3, 9, 7, 7, 6, 9, 4, 3, 4, 9, 9, 1, 7, 4, 6, 5, 9, 4, 9, 5, 9, 7
Offset: 2

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Comments

In the article by Vidunas, the third formula on page 13 is wrong. The exponent of the term K((sqrt(3)-1)/(2*sqrt(2)))^(1/3) is wrong. It should be Gamma(1/24) = Pi^(1/24) * 2^(89/36) * 3^(25/48) * sqrt(1+sqrt(2)) * (sqrt(3)-1)^(1/4) * K(1/sqrt(2))^(1/4) * K((sqrt(3)-1)/(2*sqrt(2)))^(1/6) * K((2-sqrt(3))*(sqrt(3)-sqrt(2)))^(1/2). - Vaclav Kotesovec, Apr 21 2024

Examples

			23.462487693183319881385711469586294930433365134004610164739...
		

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma(1/24); // G. C. Greubel, Mar 10 2018
  • Maple
    evalf(GAMMA(1/24), 110); # Vaclav Kotesovec, Apr 21 2024
    evalf(Pi^(1/24) * 2^(89/36) * 3^(25/48) * sqrt(1+sqrt(2)) * (sqrt(3)-1)^(1/4) * EllipticK(1/sqrt(2))^(1/4) * EllipticK((sqrt(3)-1)/(2*sqrt(2)))^(1/6) * EllipticK((2-sqrt(3))*(sqrt(3)-sqrt(2)))^(1/2), 110); # Vaclav Kotesovec, Apr 21 2024
  • Mathematica
    RealDigits[Gamma[1/24], 10, 100][[1]] (* G. C. Greubel, Mar 10 2018 *)
  • PARI
    default(realprecision, 100); gamma(1/24) \\ G. C. Greubel, Mar 10 2018
    

Formula

From Vaclav Kotesovec, Apr 21 2024: (Start)
Equals 2^(13/12) * 3^(9/16) * Pi^(1/4) * (sqrt(3) - 1)^(1/4) * sqrt((1 + sqrt(2)) * Gamma(1/3) * Gamma(1/4)) * EllipticTheta(3, 0, exp(-Pi*sqrt(6))).
Equals 2^(35/24) * 3^(3/8) * sqrt(Pi*(1 + sqrt(2)) * Gamma(1/12) / (1 + sqrt(3))) * EllipticTheta(3, 0, exp(-Pi*sqrt(6))). (End)