A203138 Decimal expansion of Gamma(1/24).
2, 3, 4, 6, 2, 4, 8, 7, 6, 9, 3, 1, 8, 3, 3, 1, 9, 8, 8, 1, 3, 8, 5, 7, 1, 1, 4, 6, 9, 5, 8, 6, 2, 9, 4, 9, 3, 0, 4, 3, 3, 3, 6, 5, 1, 3, 4, 0, 0, 4, 6, 1, 0, 1, 6, 4, 7, 3, 9, 7, 9, 8, 4, 7, 5, 8, 2, 5, 1, 5, 0, 1, 1, 4, 0, 1, 8, 3, 9, 7, 7, 6, 9, 4, 3, 4, 9, 9, 1, 7, 4, 6, 5, 9, 4, 9, 5, 9, 7
Offset: 2
Examples
23.462487693183319881385711469586294930433365134004610164739...
Links
- G. C. Greubel, Table of n, a(n) for n = 2..5002
- R. Vidunas, Expressions for values of the Gamma function, arxiv:math/0403510 [math.CA], 2004.
- Index to sequences related to gamma function
Programs
-
Magma
SetDefaultRealField(RealField(100)); Gamma(1/24); // G. C. Greubel, Mar 10 2018
-
Maple
evalf(GAMMA(1/24), 110); # Vaclav Kotesovec, Apr 21 2024 evalf(Pi^(1/24) * 2^(89/36) * 3^(25/48) * sqrt(1+sqrt(2)) * (sqrt(3)-1)^(1/4) * EllipticK(1/sqrt(2))^(1/4) * EllipticK((sqrt(3)-1)/(2*sqrt(2)))^(1/6) * EllipticK((2-sqrt(3))*(sqrt(3)-sqrt(2)))^(1/2), 110); # Vaclav Kotesovec, Apr 21 2024
-
Mathematica
RealDigits[Gamma[1/24], 10, 100][[1]] (* G. C. Greubel, Mar 10 2018 *)
-
PARI
default(realprecision, 100); gamma(1/24) \\ G. C. Greubel, Mar 10 2018
Formula
From Vaclav Kotesovec, Apr 21 2024: (Start)
Equals 2^(13/12) * 3^(9/16) * Pi^(1/4) * (sqrt(3) - 1)^(1/4) * sqrt((1 + sqrt(2)) * Gamma(1/3) * Gamma(1/4)) * EllipticTheta(3, 0, exp(-Pi*sqrt(6))).
Equals 2^(35/24) * 3^(3/8) * sqrt(Pi*(1 + sqrt(2)) * Gamma(1/12) / (1 + sqrt(3))) * EllipticTheta(3, 0, exp(-Pi*sqrt(6))). (End)
Comments