cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203150 (n-1)-st elementary symmetric function of the first n terms of (1,2,1,2,1,2,1,2,1,2,...)=A000034.

Original entry on oeis.org

1, 3, 5, 12, 16, 36, 44, 96, 112, 240, 272, 576, 640, 1344, 1472, 3072, 3328, 6912, 7424, 15360, 16384, 33792, 35840, 73728, 77824, 159744, 167936, 344064, 360448, 737280, 770048, 1572864, 1638400, 3342336, 3473408, 7077888, 7340032
Offset: 1

Views

Author

Clark Kimberling, Dec 29 2011

Keywords

Examples

			Let esf abbreviate "elementary symmetric function".  Then
0th esf of {1}:  1
1st esf of {1,2}:  1+2=3
2nd esf of {1,2,1} is 1*2+1*1+2*1=5
		

Crossrefs

Cf. A000034, A167667 (bisection?), A053220 (bisection?)

Programs

  • Mathematica
    f[k_] := 1 + Mod[k + 1, 2];
    t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 33}]  (* A203150 *)

Formula

Empirical G.f.: x*(1+3*x+x^2)/(1-4*x^2+4*x^4). - Colin Barker, Jan 03 2012
Conjecture: a(n) = (6*r*n+(1+3*(1-r)*n)*(1-(-1)^n))*r^(n-1)/8, where r=sqrt(2). - Bruno Berselli, Jan 03 2011