A203152 (n-1)-st elementary symmetric function of {1, 2, 2, 3, 3, 4, 4, 5, 5, ..., floor(1+n/2)}.
1, 3, 8, 28, 96, 420, 1824, 9696, 51360, 322560, 2021760, 14670720, 106323840, 875992320, 7211151360, 66526064640, 613365903360, 6265340928000, 63970228224000, 716840699904000, 8030097782784000, 97954524315648000
Offset: 1
Keywords
Examples
Let esf abbreviate "elementary symmetric function". Then 0th esf of {1}: 1; 1st esf of {1,2}: 1+2 = 3; 2nd esf of {1,2,2} is 1*2 + 1*2 + 2*2 = 8.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A203153.
Programs
-
Maple
SymmPolyn := proc(L::list,n::integer) local c,a,sel; a :=0 ; sel := combinat[choose](nops(L),n) ; for c in sel do a := a+mul(L[e],e=c) ; end do: a; end proc: A203152 := proc(n) local k ; L := [seq(floor(1+k/2),k=1..n)] ; SymmPolyn(L,n-1) ; end proc: # R. J. Mathar, Sep 23 2016
-
Mathematica
f[k_] := Floor[(k + 2)/2]; t[n_] := Table[f[k], {k, 1, n}] a[n_] := SymmetricPolynomial[n - 1, t[n]] Table[a[n], {n, 1, 22}] (* A203152 *)