A203153 (n-1)-st elementary symmetric function of {2, 2, 3, 3, 4, 4, 5, 5, ..., floor((n+3)/2)}.
1, 4, 16, 60, 276, 1248, 6816, 36960, 236160, 1503360, 11041920, 80922240, 672779520, 5585448960, 51894743040, 481684008960, 4948521984000, 50802038784000, 571990616064000, 6436746860544000, 78834313248768000, 965131970052096000
Offset: 1
Keywords
Examples
Let esf abbreviate "elementary symmetric function". Then 0th esf of {2}: 1; 1st esf of {2,2}: 2+2 = 4; 2nd esf of {2,2,3} is 2*2 + 2*3 + 2*3 = 16.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..999
Programs
-
Maple
SymmPolyn := proc(L::list,n::integer) local c,a,sel; a :=0 ; sel := combinat[choose](nops(L),n) ; for c in sel do a := a+mul(L[e],e=c) ; end do: a; end proc: A203153 := proc(n) [seq(floor((k+3)/2),k=1..n)] ; SymmPolyn(%,n-1) ; end proc: # R. J. Mathar, Sep 23 2016
-
Mathematica
f[k_] := Floor[(k + 3)/2]; t[n_] := Table[f[k], {k, 1, n}] a[n_] := SymmetricPolynomial[n - 1, t[n]] Table[a[n], {n, 1, 22}] (* A203153 *)