A203159 (n-1)-st elementary symmetric function of {2,4,6,8,...,2n}.
1, 6, 44, 400, 4384, 56448, 836352, 14026752, 262803456, 5441863680, 123436892160, 3044235018240, 81112101027840, 2322150583173120, 71092846618214400, 2317820965473484800, 80177108784198451200, 2932996578806543155200
Offset: 1
Keywords
Examples
(n-1)-st elementary symmetric function of {2,4,6,8,...,2n}. Let esf abbreviate "elementary symmetric function". Then 0th esf of {2}: 1 1st esf of {2,4}: 2+4=6 2nd esf of {2,4,6}: 2*4+2*6+4*6=44
Crossrefs
Cf. A004041.
Programs
-
Mathematica
f[k_] := 2 k; t[n_] := Table[f[k], {k, 1, n}] a[n_] := SymmetricPolynomial[n - 1, t[n]] Table[a[n], {n, 1, 16}] (* A203159 *)
Formula
Conjecture: a(n) +2*(-2*n+1)*a(n-1) +4*(n-1)^2*a(n-2)=0. - R. J. Mathar, Oct 01 2016