A203161 (n-1)-st elementary symmetric function of the first n terms of (3,1,2,3,1,2,3,1,2,...).
1, 4, 11, 39, 57, 132, 432, 540, 1188, 3780, 4428, 9504, 29808, 33696, 71280, 221616, 244944, 513216, 1586304, 1726272, 3592512, 11057472, 11897280, 24634368, 75582720, 80621568, 166281984, 508923648, 539156736, 1108546560, 3386105856
Offset: 1
Examples
Let esf abbreviate "elementary symmetric function". Then 0th esf of {3}: 1, 1st esf of {3,1}: 3+1=4, 2nd esf of {3,1,2} is 3*1+3*1+1*2=11.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,12,0,0,-36).
Programs
-
Mathematica
f[k_] := 1 + Mod[k + 1, 3]; t[n_] := Table[f[k], {k, 1, n}] a[n_] := SymmetricPolynomial[n - 1, t[n]] Table[a[n], {n, 1, 33}] (* A203161 *)
-
PARI
Vec(x*(3*x+1)*(3*x^3+8*x^2+x+1)/(6*x^3-1)^2 + O(x^100)) \\ Colin Barker, Aug 15 2014
Formula
G.f.: x*(3*x+1)*(3*x^3+8*x^2+x+1) / (6*x^3-1)^2. - Colin Barker, Aug 15 2014
Comments