cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203162 (n-1)-st elementary symmetric function of the first n terms of (1,2,3,1,2,3,1,2,3,...).

Original entry on oeis.org

1, 3, 11, 17, 40, 132, 168, 372, 1188, 1404, 3024, 9504, 10800, 22896, 71280, 79056, 165888, 513216, 559872, 1166400, 3592512, 3872448, 8024832, 24634368, 26313984, 54307584, 166281984, 176359680, 362797056, 1108546560, 1169012736
Offset: 1

Views

Author

Clark Kimberling, Dec 29 2011

Keywords

Examples

			Let esf abbreviate "elementary symmetric function". Then
0th esf of {1}:  1;
1st esf of {1,2}:  1+2=3;
2nd esf of {1,2,3} is 1*2+1*3+2*3=11.
		

Crossrefs

Programs

  • GAP
    a:=[1, 3, 11, 17, 40, 132];; for n in [7..40] do a[n]:=12*a[n-1]-36*a[n-2]-a[n-3]; od; a; # G. C. Greubel, May 10 2019
  • Magma
    I:=[1, 3, 11, 17, 40, 132]; [n le 6 select I[n] else 12*Self(n-3) -36*Self(n-6): n in [1..40]]; // G. C. Greubel, May 10 2019
    
  • Mathematica
    f[k_] := 1 + Mod[k + 2, 3]; t[n_] := Table[f[k], {k, n}]; a[n_] := SymmetricPolynomial[n - 1, t[n]]; Table[a[n], {n, 40}] (* A203162 *)
    Rest[CoefficientList[Series[x*(1 + 3*x + 11*x^2 + 5*x^3 + 4*x^4)/(1 - 6*x^3)^2, {x, 0, 30}], x]] (* Vaclav Kotesovec, May 10 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec(x*(1+3*x+11*x^2+5*x^3+4*x^4)/(1-6*x^3)^2) \\ G. C. Greubel, May 10 2019
    
  • Sage
    a=(x*(1+3*x+11*x^2+5*x^3+4*x^4)/(1-6*x^3)^2).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 10 2019
    

Formula

a(n) = 12*a(n-3)-36*a(n-6). - Clark Kimberling, Aug 18 2012
G.f.: x*(1 + 3*x + 11*x^2 + 5*x^3 + 4*x^4)/(1 - 6*x^3)^2. - Clark Kimberling, Aug 18 2012; corrected by Georg Fischer, May 10 2019