cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A203175 Number of nX2 0..2 arrays with every 1 immediately preceded by 0 to the left or above, no 0 immediately preceded by a 0, and every 2 immediately preceded by 0 1 to the left or above.

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 18, 30, 50, 86, 146, 246, 418, 710, 1202, 2038, 3458, 5862, 9938, 16854, 28578, 48454, 82162, 139318, 236226, 400550, 679186, 1151638, 1952738, 3311110, 5614386, 9519862, 16142082, 27370854, 46410578, 78694742, 133436450, 226257606
Offset: 1

Views

Author

R. H. Hardin, Dec 30 2011

Keywords

Comments

Column 2 of A203181.
It seems that for n>=1 a(n) equals the number of (n-1)-length binary words avoiding runs of zeros of length 1 (mod 3). - Milan Janjic, Feb 28 2015

Examples

			All solutions for n=5:
..0..1....0..1....0..1....0..1....0..1....0..1
..1..0....1..0....1..0....1..0....1..0....1..0
..0..1....0..1....0..1....2..1....2..1....0..1
..1..0....1..2....1..0....0..1....0..2....1..2
..2..1....2..0....0..1....1..0....1..0....0..1
		

References

  • D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links in A003229 for an earlier version. See beta_n for this sequence. - N. J. A. Sloane, Jul 08 2014

Crossrefs

Formula

Empirical: a(n) = a(n-1) + 2*a(n-3) = A003229(n-4)+A003229(n-2).
Empirical G.f.: -x*(1+x^2) / ( -1+x+2*x^3 ). - R. J. Mathar, Jul 02 2013

A203176 Number of n X 3 0..2 arrays with every 1 immediately preceded by 0 to the left or above, no 0 immediately preceded by a 0, and every 2 immediately preceded by 0 1 to the left or above.

Original entry on oeis.org

2, 2, 7, 17, 41, 97, 235, 607, 1415, 3486, 8648, 20838, 51170, 124939, 305270, 746199, 1820662, 4454559, 10877169, 26569604, 64944236, 158629072, 387600053, 946993492, 2313654220, 5653010591, 13810992779, 33744134975, 82444452049
Offset: 1

Views

Author

R. H. Hardin, Dec 30 2011

Keywords

Comments

Column 3 of A203181.

Examples

			Some solutions for n=5:
..0..1..2....0..1..2....0..1..0....0..1..2....0..1..2....0..1..2....0..1..0
..1..0..1....1..0..1....1..0..1....1..0..1....1..0..1....1..0..1....1..0..1
..2..1..0....0..1..2....0..1..0....2..1..0....0..1..0....0..1..2....2..1..2
..0..1..1....1..0..1....1..0..1....0..2..1....1..2..1....1..0..1....0..1..0
..1..0..2....0..1..0....0..1..0....1..0..2....2..0..1....0..1..2....1..0..1
		

Formula

Empirical: a(n) = 2*a(n-2) +10*a(n-3) +5*a(n-4) -a(n-5) -31*a(n-6) -7*a(n-7) +30*a(n-9) for n>10.
Empirical G.f.:
2*x -x^2*(2+7*x+13*x^2+7*x^3-17*x^4-50*x^5-13*x^6+18*x^7+54*x^8) / ( -1+2*x^2+10*x^3+5*x^4-x^5-31*x^6-7*x^7+30*x^9 ). - R. J. Mathar, Jul 02 2013

A203177 Number of nX4 0..2 arrays with every 1 immediately preceded by 0 to the left or above, no 0 immediately preceded by a 0, and every 2 immediately preceded by 0 1 to the left or above.

Original entry on oeis.org

2, 4, 17, 59, 205, 724, 2466, 8948, 30945, 108083, 382615, 1333850, 4692643, 16441939, 57654309, 202490869, 709321155, 2489832932, 8732839148, 30624223891, 107449317301, 376820699674, 1321873641658, 4636665217896, 16263018992261
Offset: 1

Views

Author

R. H. Hardin Dec 30 2011

Keywords

Comments

Column 4 of A203181

Examples

			Some solutions for n=5
..0..1..2..0....0..1..2..0....0..1..2..0....0..1..2..0....0..1..0..1
..1..0..1..1....1..0..1..1....1..0..1..2....1..0..1..1....1..0..1..0
..0..1..0..1....0..1..2..0....0..1..2..0....0..1..0..1....0..1..0..1
..1..2..1..0....1..2..0..1....1..0..1..1....1..2..1..0....1..0..1..0
..0..1..0..1....0..1..1..2....0..1..2..0....2..0..2..1....2..1..2..1
		

Formula

Empirical: a(n) = 5*a(n-2) +34*a(n-3) +13*a(n-4) -38*a(n-5) -419*a(n-6) -124*a(n-7) +145*a(n-8) +2520*a(n-9) +37*a(n-10) -584*a(n-11) -6715*a(n-12) +1170*a(n-13) +55*a(n-14) +6304*a(n-15) +476*a(n-16) -78*a(n-17) -480*a(n-19)

A203178 Number of n X 5 0..2 arrays with every 1 immediately preceded by 0 to the left or above, no 0 immediately preceded by a 0, and every 2 immediately preceded by 0 1 to the left or above.

Original entry on oeis.org

3, 6, 41, 205, 952, 4654, 23083, 115377, 551208, 2757161, 13535075, 66032042, 327270427, 1600093371, 7879616025, 38759698990, 190148017740, 936372926748, 4597851371118, 22603571928513, 111146666196027, 546043267710074
Offset: 1

Views

Author

R. H. Hardin, Dec 30 2011

Keywords

Comments

Column 5 of A203181.

Examples

			Some solutions for n=5
..0..1..0..1..0....0..1..0..1..2....0..1..0..1..2....0..1..2..0..1
..1..0..1..2..1....1..0..1..0..1....1..0..1..2..0....1..0..1..1..0
..0..1..2..0..1....2..1..2..1..0....2..1..0..1..1....0..1..2..2..1
..1..0..1..1..0....0..1..2..2..1....0..1..2..0..2....1..0..1..2..2
..0..1..0..2..1....1..0..1..2..2....1..0..1..2..0....0..1..0..1..0
		

Crossrefs

Cf. A203181.

Formula

Empirical: a(n) = 8*a(n-2) +116*a(n-3) +51*a(n-4) -167*a(n-5) -5304*a(n-6) -2099*a(n-7) -2525*a(n-8) +135828*a(n-9) +21391*a(n-10) +123514*a(n-11) -2093446*a(n-12) +97691*a(n-13) -1966033*a(n-14) +19493219*a(n-15) -3026365*a(n-16) +20145258*a(n-17) -113265090*a(n-18) +15159673*a(n-19) -114880900*a(n-20) +405552988*a(n-21) -19056386*a(n-22) +326124841*a(n-23) -748576479*a(n-24) -82472243*a(n-25) -466324510*a(n-26) +468742748*a(n-27) +186385862*a(n-28) +282899431*a(n-29) +170444820*a(n-30) -68888448*a(n-31) -45542936*a(n-32) -71161527*a(n-33) +37789114*a(n-34) -8127020*a(n-35) -13969563*a(n-36) +5855719*a(n-37) -3592899*a(n-38) -388368*a(n-39) +412490*a(n-40) -118958*a(n-41) +20064*a(n-42) -2340*a(n-43) for n>45.

A203179 Number of nX6 0..2 arrays with every 1 immediately preceded by 0 to the left or above, no 0 immediately preceded by a 0, and every 2 immediately preceded by 0 1 to the left or above.

Original entry on oeis.org

4, 10, 97, 724, 4654, 32411, 223567, 1625772, 10889470, 76035931, 539862935, 3683134752, 25862504933, 179896714051, 1247517606405, 8718625375796, 60458475058013, 421400784685266, 2932977483238766, 20384373553735223
Offset: 1

Views

Author

R. H. Hardin Dec 30 2011

Keywords

Comments

Column 6 of A203181

Examples

			Some solutions for n=5
..0..1..2..0..1..0....0..1..0..1..2..0....0..1..0..1..2..0....0..1..0..1..2..0
..1..0..1..1..0..1....1..0..1..0..1..2....1..0..1..0..1..1....1..0..1..2..0..1
..0..1..0..1..1..0....2..1..0..1..0..1....2..1..2..1..0..1....0..1..2..0..1..2
..1..0..1..2..0..1....0..2..1..0..1..2....0..1..0..2..1..0....1..2..0..1..0..1
..2..1..0..1..1..2....1..0..1..2..2..0....1..0..1..2..0..1....0..1..2..0..1..0
		

Formula

Empirical: a(n) = 14*a(n-2) +396*a(n-3) +202*a(n-4) -1009*a(n-5) -66414*a(n-6) -32240*a(n-7) -110575*a(n-8) +6578389*a(n-9) +1507258*a(n-10) +20744661*a(n-11) -435758714*a(n-12) +14520607*a(n-13) -1456456802*a(n-14) +20149326068*a(n-15) -4410383003*a(n-16) +63644182039*a(n-17) -670701897047*a(n-18) +211188579414*a(n-19) -1999527643516*a(n-20) +16554905623851*a(n-21) -5681297339546*a(n-22) +46806642572687*a(n-23) -307872287639929*a(n-24) +105878780847765*a(n-25) -818817821752288*a(n-26) +4301552367129775*a(n-27) -1436827333817105*a(n-28) +10573849155204522*a(n-29) -44615722711915979*a(n-30) +14053696990772678*a(n-31) -98917893565815684*a(n-32) +336234716940400565*a(n-33) -93954564845232171*a(n-34) +658891077454748374*a(n-35) -1785222550948480210*a(n-36) +409575521472953485*a(n-37) -3062197730568261048*a(n-38) +6380660920207134034*a(n-39) -1029356181095712270*a(n-40) +9639328322541247738*a(n-41) -13981005616750126251*a(n-42) +878509269207968288*a(n-43) -19522295493022877225*a(n-44) +13844992813143381732*a(n-45) +2027794213310988641*a(n-46) +22153210851663589329*a(n-47) +5495958203925397581*a(n-48) -5808289534410419787*a(n-49) -8451893910926744277*a(n-50) -18076637690824674364*a(n-51) +10730202468622598998*a(n-52) -5984462396205490547*a(n-53) +30048561749093347*a(n-54) +4143961478196040426*a(n-55) -2714919700075631046*a(n-56) +12282263289165190484*a(n-57) -7519381604651974532*a(n-58) +10175822445551655531*a(n-59) -7922290111488055118*a(n-60) -4510166431675737412*a(n-61) +5847636632882090745*a(n-62) -4385832004790339766*a(n-63) -1293303714804383560*a(n-64) +2343971246854924119*a(n-65) -2759614030456732374*a(n-66) +1834340247020712585*a(n-67) -453653472325217692*a(n-68) +311878442872796178*a(n-69) +148957906735972848*a(n-70) -122149325085638280*a(n-71) -4468147648525060*a(n-72) -35208911645561924*a(n-73) +7994448209013984*a(n-74) -4322695775007376*a(n-75) +1131239156088912*a(n-76) +33840445415872*a(n-77) -89539203965760*a(n-78) -108192854108928*a(n-79) +48107960009856*a(n-80) -48349804889088*a(n-81) +3956225670144*a(n-82) -1650699730944*a(n-83) -210913984512*a(n-84) for n>87

A203180 Number of nX7 0..2 arrays with every 1 immediately preceded by 0 to the left or above, no 0 immediately preceded by a 0, and every 2 immediately preceded by 0 1 to the left or above.

Original entry on oeis.org

5, 18, 235, 2466, 23083, 223567, 2208945, 22411843, 216858412, 2141041521, 21294389765, 209517628754, 2070288232686, 20420464639642, 201913230471755, 1993188902599209, 19665745111235770, 194376407794905718
Offset: 1

Views

Author

R. H. Hardin Dec 30 2011

Keywords

Comments

Column 7 of A203181

Examples

			Some solutions for n=5
..0..1..2..0..1..0..1....0..1..0..1..2..0..1....0..1..0..1..2..0..1
..1..0..1..2..0..1..0....1..0..1..2..0..1..0....1..0..1..0..1..2..0
..0..1..0..1..1..2..1....0..1..0..1..1..0..1....0..1..0..1..2..0..1
..1..0..1..0..1..0..1....1..0..1..0..2..1..2....1..2..1..2..0..1..0
..0..1..2..1..0..1..0....2..1..0..1..2..0..1....0..1..0..1..1..0..1
		

A203174 Number of n X n 0..2 arrays with every 1 immediately preceded by 0 to the left or above, no 0 immediately preceded by a 0, and every 2 immediately preceded by 0 1 to the left or above.

Original entry on oeis.org

1, 1, 7, 59, 952, 32411, 2208945, 323885934, 84492757788, 47354744651060, 53683376052551785, 116641756206417848067, 528882406558326590368278
Offset: 1

Views

Author

R. H. Hardin Dec 30 2011

Keywords

Comments

Diagonal of A203181

Examples

			Some solutions for n=5
..0..1..0..1..2....0..1..0..1..2....0..1..0..1..2....0..1..2..0..1
..1..0..1..2..0....1..0..1..0..1....1..0..1..0..1....1..0..1..2..0
..0..1..0..1..1....2..1..2..1..0....2..1..2..1..0....0..1..2..0..1
..1..0..1..0..2....0..2..0..1..1....0..1..0..2..1....1..0..1..1..0
..0..1..0..1..2....1..0..1..0..2....1..0..1..2..2....0..1..0..1..2
		
Showing 1-7 of 7 results.