cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A203181 T(n,k) is the number of n X k 0..2 arrays with every 1 immediately preceded by 0 to the left or above, no 0 immediately preceded by a 0, and every 2 immediately preceded by 0 1 to the left or above.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 4, 7, 4, 3, 4, 6, 17, 17, 6, 4, 5, 10, 41, 59, 41, 10, 5, 7, 18, 97, 205, 205, 97, 18, 7, 9, 30, 235, 724, 952, 724, 235, 30, 9, 12, 50, 607, 2466, 4654, 4654, 2466, 607, 50, 12, 16, 86, 1415, 8948, 23083, 32411, 23083, 8948, 1415, 86, 16, 21, 146
Offset: 1

Views

Author

R. H. Hardin, Dec 30 2011

Keywords

Comments

Table starts
.1..1...2....2......3.......4........5.........7..........9..........12
.1..1...2....4......6......10.......18........30.........50..........86
.2..2...7...17.....41......97......235.......607.......1415........3486
.2..4..17...59....205.....724.....2466......8948......30945......108083
.3..6..41..205....952....4654....23083....115377.....551208.....2757161
.4.10..97..724...4654...32411...223567...1625772...10889470....76035931
.5.18.235.2466..23083..223567..2208945..22411843..216858412..2141041521
.7.30.607.8948.115377.1625772.22411843.323885934.4389100997.61921804090

Examples

			Some solutions for n=5 k=3
..0..1..0....0..1..2....0..1..0....0..1..0....0..1..2....0..1..0....0..1..2
..1..0..1....1..0..1....1..0..1....1..0..1....1..0..1....1..0..1....1..0..1
..2..1..2....2..1..0....2..1..2....0..1..0....0..1..2....0..1..2....0..1..0
..0..1..2....0..1..2....0..1..0....1..2..1....1..2..0....1..2..0....1..2..1
..1..0..1....1..0..1....1..0..1....2..0..1....0..1..1....0..1..1....2..0..1
		

Crossrefs

Column 1 is A000931(n+5). Column 2 is A203175.

A289265 Decimal expansion of the real root of x^3 - x^2 - 2 = 0.

Original entry on oeis.org

1, 6, 9, 5, 6, 2, 0, 7, 6, 9, 5, 5, 9, 8, 6, 2, 0, 5, 7, 4, 1, 6, 3, 6, 7, 1, 0, 0, 1, 1, 7, 5, 3, 5, 3, 4, 2, 6, 1, 8, 1, 7, 9, 3, 8, 8, 2, 0, 8, 5, 0, 7, 7, 3, 0, 2, 2, 1, 8, 7, 0, 7, 2, 8, 4, 4, 5, 2, 4, 4, 5, 3, 4, 5, 4, 0, 8, 0, 0, 7, 2, 2, 1, 3, 9, 9
Offset: 1

Views

Author

Clark Kimberling, Jul 14 2017

Keywords

Examples

			1.6956207695598620574163671001175353426181793882085077...
		

References

  • D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves, unpublished, 1976, end of section 2. See links in A003229.

Crossrefs

Cf. A078140 (includes guide to constants similar to A289260).

Programs

  • Mathematica
    z = 2000; r = 8/5;
    u = CoefficientList[Series[1/Sum[Floor[(k + 1)*r] (-x)^k, {k, 0, z}], {x, 0, z}], x];  (* A289260 *)
    v = N[u[[z]]/u[[z - 1]], 200]
    RealDigits[v, 10][[1]] (* A289265 *)
  • PARI
    solve(x=1, 2, x^3 - x^2 - 2) \\ Michel Marcus, Oct 26 2019

Formula

r = D^(1/3) + (1/9)*D^(-1/3) + 1/3 where D = 28/27 + (1/9)*sqrt(29*3) [Chang and Zhang] from the usual cubic solution formula. Or similarly r = (1/3)*(1 + C + 1/C) where C = (28 + sqrt(29*27))^(1/3). - Kevin Ryde, Oct 25 2019

A227036 Expansion of 2*(1+x^2)/((1-x)*(1-x-2*x^3)).

Original entry on oeis.org

2, 4, 8, 16, 28, 48, 84, 144, 244, 416, 708, 1200, 2036, 3456, 5860, 9936, 16852, 28576, 48452, 82160, 139316, 236224, 400548, 679184, 1151636, 1952736, 3311108, 5614384, 9519860, 16142080, 27370852, 46410576, 78694740, 133436448, 226257604, 383647088, 650519988, 1103035200, 1870329380
Offset: 0

Views

Author

Roland Kneer, Jun 28 2013

Keywords

Comments

Conjecture: The perimeter of the n-th iteration of the Harter-Heighway dragon is a(n) segments or a(n)/2^(n/2) base units.
a(n) = 2^(n+1)-4*A003230(n-4) (two times the number of segments, minus four times the number of squares)
The first differences 2, 2, 4, 8, 12, 20,.. are twice the (empirical) A203175. - R. J. Mathar, Jul 02 2013

Examples

			For the 4th iteration, take two 3rd iteration dragons (2*16); put together, they will make one square, so subtract the inner perimeter 4.
		

Crossrefs

Cf. A014577.

Programs

  • Mathematica
    LinearRecurrence[{2, -1, 2, -2}, {2, 4, 8, 16}, 40] (* T. D. Noe, Jul 02 2013 *)
    CoefficientList[Series[2 (1 + x^2) / ((1 - x) (1 - x - 2 x^3)), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 17 2013 *)
  • PARI
    Vec(2*(1+x^2)/((1-x)*(1-x-2*x^3))+O(x^66)) \\ Joerg Arndt, Jul 01 2013
Showing 1-3 of 3 results.