cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A289260 Coefficients in the expansion of 1/([r]-[2r]x+[3r]x^2-...); [ ]=floor, r=8/5.

Original entry on oeis.org

1, 3, 5, 9, 17, 30, 52, 90, 154, 262, 446, 758, 1286, 2182, 3702, 6278, 10646, 18054, 30614, 51910, 88022, 149254, 253078, 429126, 727638, 1233798, 2092054, 3547334, 6014934, 10199046, 17293718, 29323590, 49721686, 84309126, 142956310, 242399686, 411017942
Offset: 0

Views

Author

Clark Kimberling, Jul 14 2017

Keywords

Comments

Conjecture: the sequence is strictly increasing.

Crossrefs

Cf. A078140 (includes guide to related sequences), A289265.
Cf. A279780.

Programs

  • Mathematica
    r = 8/5;
    u = 1000; (* # initial terms from given series *)
    v = 100;   (* # coefficients in reciprocal series *)
    CoefficientList[Series[1/Sum[Floor[r*(k + 1)] (-x)^k, {k, 0, u}], {x, 0, v}], x]
    LinearRecurrence[{2,-1,2,-2},{1,3,5,9,17,30,52},40] (* Harvey P. Dale, Oct 13 2023 *)
  • PARI
    Vec((1 + x)^2*(1 - x + x^2 - x^3 + x^4) / ((1 - x)*(1 - x - 2*x^3)) + O(x^50)) \\ Colin Barker, Jul 20 2017

Formula

G.f.: 1/(Sum_{k>=0} [(k+1)*r](-x)^k), where r = 8/5 and [ ] = floor.
From Colin Barker, Jul 14 2017: (Start)
G.f.: (1 + x)^2*(1 - x + x^2 - x^3 + x^4) / ((1 - x)*(1 - x - 2*x^3)).
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - 2*a(n-4) for n>3.
(End)
a(n) = abs(A279780(n)). - Alois P. Heinz, Jul 15 2017

A338089 Minimal number of moves for the cyclic variant of Hanoi's tower for 4 pegs and n disks, with the final peg three steps away.

Original entry on oeis.org

3, 10, 21, 40, 75, 134, 233, 400, 683, 1166, 1981, 3364, 5711, 9690, 16433, 27872, 47267, 80150, 135909, 230460, 390775
Offset: 1

Views

Author

Paul Zimmermann, Oct 09 2020

Keywords

Examples

			For n=2, assume the two disks are on North initially, first move the smallest one to South in 2 moves, then the largest one to East in 1 move, the smallest one back to North in 2 moves, the largest one to West in 2 moves, and finally the smallest one to West in 3 moves, with a total of 10 moves. Each disk has a number of moves which is 3 mod 4, thus a(n) == 3*n (mod 4).
		

Crossrefs

Formula

Conjecture: a(n) = a(n-1) + a(n-2) + a(n-3) - 2*a(n-5) for n > 9 (the same recurrence as conjectured in A292764 and A338024). - Pontus von Brömssen, Oct 12 2020
a(n) ~ k*r^n, k = (725 + (310451786 - 3203949*sqrt(87))^(1/3) + (310451786 + 3203949*sqrt(87))^(1/3))/348, r=constant of A289265 (closed-form by Amiram Eldar via von Brömssen conjecture). - Bill McEachen, Aug 19 2025

Extensions

a(17)-a(21) from Martin Ehrenstein, Oct 26 2020

A272031 Decimal expansion of the Hausdorff dimension of the Heighway-Harter dragon curve boundary.

Original entry on oeis.org

1, 5, 2, 3, 6, 2, 7, 0, 8, 6, 2, 0, 2, 4, 9, 2, 1, 0, 6, 2, 7, 7, 6, 8, 3, 9, 3, 5, 9, 5, 4, 2, 1, 6, 6, 2, 7, 2, 8, 4, 9, 3, 6, 3, 8, 3, 4, 0, 1, 1, 9, 3, 4, 7, 8, 1, 3, 8, 6, 9, 0, 9, 0, 9, 4, 5, 7, 9, 2, 1, 6, 6, 2, 8, 9, 5, 8, 8, 4, 1, 0, 6, 8, 9, 2, 6, 6, 4, 2, 2, 7, 4, 6, 4, 7, 1, 3, 9, 4, 2, 8, 1, 1, 2, 4
Offset: 1

Views

Author

Stanislav Sykora, Apr 18 2016

Keywords

Comments

The value for 'twindragon' is the same.

Examples

			1.5236270862024921062776839359542166272849363834011934781386909094...
		

Crossrefs

Cf. A014577, A191689 (Levy dragon), A327620 (tame twin-dragon).

Programs

  • Mathematica
    RealDigits[Log2[(1 + (73+6*Sqrt[87])^(1/3) + (73-6*Sqrt[87])^(1/3))/3], 10, 100][[1]] (* Amiram Eldar, May 18 2021 *)
  • PARI
    log((1+(73+6*sqrt(87))^(1/3)+(73-6*sqrt(87))^(1/3))/3)/log(2)

Formula

Equals log_2((1+(73+6*sqrt(87))^(1/3)+(73-6*sqrt(87))^(1/3))/3).
From Kevin Ryde, Dec 06 2019: (Start)
Equals 2*log(A289265)/log(2) [Chang and Zhang, equation 9].
Equals log(A289265)/log(sqrt(2)). (End)

A317494 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 2 * T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 1, 6, 1, 8, 4, 1, 10, 12, 1, 12, 24, 1, 14, 40, 8, 1, 16, 60, 32, 1, 18, 84, 80, 1, 20, 112, 160, 16, 1, 22, 144, 280, 80, 1, 24, 180, 448, 240, 1, 26, 220, 672, 560, 32, 1, 28, 264, 960, 1120, 192, 1, 30, 312, 1320, 2016, 672, 1, 32, 364, 1760, 3360, 1792, 64
Offset: 0

Views

Author

Zagros Lalo, Jul 30 2018

Keywords

Comments

The numbers in rows of the triangle are along a "second layer" of skew diagonals pointing top-right in center-justified triangle given in A013609 ((1+2*x)^n) and along a "second layer" of skew diagonals pointing top-left in center-justified triangle given in A038207 ((2+x)^n), see links. (Note: First layer skew diagonals in center-justified triangles of coefficients in expansions of (1+2*x)^n and (2+x)^n are given in A128099 and A207538 respectively.)
The coefficients in the expansion of 1/(1-x-2*x^3) are given by the sequence generated by the row sums.
The row sums give A003229.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 1.695620769559862... (see A289265), when n approaches infinity.

Examples

			Triangle begins:
  1;
  1;
  1;
  1,  2;
  1,  4;
  1,  6;
  1,  8,   4;
  1, 10,  12;
  1, 12,  24;
  1, 14,  40,    8;
  1, 16,  60,   32;
  1, 18,  84,   80;
  1, 20, 112,  160,   16;
  1, 22, 144,  280,   80;
  1, 24, 180,  448,  240;
  1, 26, 220,  672,  560,   32;
  1, 28, 264,  960, 1120,  192;
  1, 30, 312, 1320, 2016,  672;
  1, 32, 364, 1760, 3360, 1792, 64;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 358, 359

Crossrefs

Programs

  • GAP
    Flat(List([0..20],n->List([0..Int(n/3)],k->2^k/(Factorial(n-3*k)*Factorial(k))*Factorial(n-2*k)))); # Muniru A Asiru, Jul 31 2018
  • Mathematica
    t[n_, k_] := t[n, k] = 2^k/((n - 3 k)! k!) (n - 2 k)!; Table[t[n, k], {n, 0, 18}, {k, 0, Floor[n/3]} ] // Flatten
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 18}, {k, 0, Floor[n/3]}] // Flatten

Formula

T(n,k) = 2^k / ((n - 3k)! k!) * (n - 2k)! where n is a nonnegative integer and k = 0..floor(n/3).

A356035 Decimal expansion of the real root of x^3 - 2*x^2 - 1.

Original entry on oeis.org

2, 2, 0, 5, 5, 6, 9, 4, 3, 0, 4, 0, 0, 5, 9, 0, 3, 1, 1, 7, 0, 2, 0, 2, 8, 6, 1, 7, 7, 8, 3, 8, 2, 3, 4, 2, 6, 3, 7, 7, 1, 0, 8, 9, 1, 9, 5, 9, 7, 6, 9, 9, 4, 4, 0, 4, 7, 0, 5, 5, 2, 2, 0, 3, 5, 5, 1, 8, 3, 4, 7, 9, 0, 3, 5, 9, 1, 6, 7, 4, 6, 9, 1, 7, 6, 4, 1, 8
Offset: 1

Views

Author

Wolfdieter Lang, Aug 18 2022

Keywords

Comments

This is the minimum number having the property that there are uncountably many permutation classes with the growth rate equal to that number. [Vatter] - Andrey Zabolotskiy, Dec 04 2024

Examples

			2.2055694304005903117020286177838234263771089195976994404705522035518347903...
		

Crossrefs

Programs

Formula

Equals ((172 + 12*sqrt(177))^(1/3)+16/(172 + 12*sqrt(177))^(1/3) + 4)/6.
Equals ((172 + 12*sqrt(177))^(1/3) + (172 - 12*sqrt(177))^(1/3) + 4)/6.
Equals (((1/2)*(43 + 3*sqrt(3*59)))^(1/3) + ((1/2)*(43 - 3*sqrt(3*59)))^(1/3) + 2)/3.
Equals 2*(1 + 2*cosh(log((43 + 3*sqrt(177))/16)/3))/3. - Vaclav Kotesovec, Aug 19 2022
Equals y + 2/3 where y = 1.538902... is the real root of y^3 - (4/3)*y - 43/27.
Equals 1 + A137421. - R. J. Mathar, Sep 23 2022
Equals 1/A272874. - Hugo Pfoertner, Sep 11 2024

A356030 Decimal expansion of the real root of x^3 - x - 2.

Original entry on oeis.org

1, 5, 2, 1, 3, 7, 9, 7, 0, 6, 8, 0, 4, 5, 6, 7, 5, 6, 9, 6, 0, 4, 0, 8, 0, 8, 3, 2, 2, 5, 4, 4, 3, 8, 5, 1, 4, 4, 2, 8, 3, 8, 9, 8, 2, 8, 4, 2, 7, 9, 0, 3, 9, 0, 9, 0, 9, 0, 4, 9, 8, 0, 1, 5, 4, 2, 8, 1, 5, 6, 4, 0, 3, 4, 3, 0, 5, 8, 8, 2, 1, 6, 0, 4, 9, 1, 6, 3, 7, 9, 2, 6, 9, 6, 7, 3, 3, 8, 7, 7, 0, 5, 6, 7, 9
Offset: 1

Views

Author

Wolfdieter Lang, Aug 19 2022

Keywords

Examples

			1.5213797068045675696040808322544385144283898284279039090904980154281564...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x /. FindRoot[x^3 - x - 2, {x, 2}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Jun 18 2023 *)
  • PARI
    solve(x=1, 2, x^3 - x - 2) \\ Michel Marcus, Aug 19 2022

Formula

Equals ((27 + 3*sqrt(78))^(1/3) + 3/(27 + 3*sqrt(78))^(1/3))/3.
Equals (1 + sqrt(78)/9)^(1/3) + (1 - sqrt(78)/9)^(1/3).
Showing 1-6 of 6 results.