A327620 Decimal expansion of the Hausdorff dimension of the boundary of the tame twin-dragon curve.
1, 2, 1, 0, 7, 6, 0, 5, 3, 3, 2, 8, 8, 5, 2, 3, 3, 9, 5, 0, 2, 5, 8, 6, 7, 5, 0, 6, 4, 2, 9, 4, 6, 4, 3, 8, 8, 8, 6, 6, 8, 2, 0, 2, 3, 8, 7, 5, 5, 1, 3, 7, 8, 3, 9, 8, 6, 8, 4, 8, 8, 4, 3, 1, 1, 8, 7, 4, 9, 9, 6, 7, 7, 2, 4, 6, 1, 5, 3, 6, 7, 3, 4, 6, 6, 6, 5
Offset: 1
Examples
1.2107605332885233950258675064294643888668202387553...
References
- Jean-Paul Delahaye, Mathématiques pour le Plaisir, Belin Pour la Science, Paver des pavés, 2010, pp. 58-65.
Links
- Sze-Man Ngai, Victor F. Sirvent, J. J. P. Veerman, and Yang Wang, On 2-Reptiles in the Plane, Portland State University, PDX Scholar, 1999.
- Eric Weisstein's World of Mathematics, Rep-Tile.
- Wikimedia, Tame twindragon tile.
- Wikipedia, Hausdorff dimension.
- Wikipedia, List of fractals by Hausdorff dimension.
Programs
-
Maple
evalf(2*log((1+sqrt(78)/9))^(1/3)+(1-sqrt(78)/9))^(1/3))/log(2),50);
-
Mathematica
RealDigits[2 * Log2[(1 + Sqrt[78]/9)^(1/3) + (1 - Sqrt[78]/9)^(1/3)], 10, 100][[1]] (* Amiram Eldar, Sep 19 2019 *)
-
PARI
2 * log((1+sqrt(78)/9)^(1/3)+(1-sqrt(78)/9)^(1/3))/log(2) \\ Michel Marcus, Sep 21 2019
Formula
Equals 2 * log_2((1+sqrt(78)/9)^(1/3) + (1-sqrt(78)/9)^(1/3)).
Comments