A203007
(n-1)-st elementary symmetric function of Fibonacci numbers F(2) to F(n).
Original entry on oeis.org
1, 3, 11, 61, 518, 6974, 149574, 5151036, 285534660, 25535107140, 3687959921760, 860864908848480, 324911938205144160, 198334214378751672000, 195840008156732278248000, 312839537789862069432264000
Offset: 1
-
f[k_] := Fibonacci[k + 1]; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 16}] (* A203007 *)
A379104
a(n) = third elementary symmetric function of the first n distinct Fibonacci numbers.
Original entry on oeis.org
6, 61, 389, 2066, 9962, 45594, 202344, 881859, 3801171, 16275292, 69399116, 295177196, 1253532482, 5318285553, 22550198601, 95580699774, 405034367814, 1716140731030, 7270703692340, 30801852323495, 130485697292231, 552764498063256, 2341595675572344
Offset: 3
a(2) = 1*2*3 + 1*2*5 + 1*3*5 + 2*3*5 = 61.
-
z = 50; w[i_] := Fibonacci[i];
t[n_] := Table[w[i], {i, 2, n}]
v[n_] := SymmetricPolynomial[3, t[n]]
tt = Table[v[n], {n, 4, 25}]
Showing 1-2 of 2 results.
Comments