cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A209397 L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} x^n/n * exp( Sum_{k>=1} a(k)*x^(n*k)/k ).

Original entry on oeis.org

1, 3, 7, 19, 46, 129, 337, 939, 2581, 7238, 20263, 57337, 162319, 461961, 1317217, 3767035, 10792400, 30983565, 89084845, 256531814, 739658815, 2135234247, 6170505666, 17849457873, 51679366171, 149750711581, 434260829464, 1260198317509, 3659410074933
Offset: 1

Views

Author

Paul D. Hanna, Mar 07 2012

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 19*x^4/4 + 46*x^5/5 + 129*x^6/6 +...
Let G(x) be the g.f. of A000081, then
exp(L(x)) = G(x)/x where G(x) = x*exp( Sum_{n>=1} G(x^n)/n ) begins:
G(x) = x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 20*x^6 + 48*x^7 + 115*x^8 + 286*x^9 + 719*x^10 + 1842*x^11 + 4766*x^12 + 12486*x^13 + 32973*x^14 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(L=vector(n, i, 1)); for(i=1, n, L=Vec(deriv(sum(m=1, n, x^m/m*exp(sum(k=1, n\m, L[k]*x^(m*k)/k)+x*O(x^n)))))); L[n]}
    for(n=1,30,print1(a(n),","))

Formula

a(n) = Sum_{d|n} d*A000081(d).
L.g.f.: Sum_{n>=1} -A000081(n) * log(1-x^n).
L.g.f.: log( G(x)/x ) = Sum_{n>=1} G(x^n)/n where G(x) is the g.f. of A000081, which is the number of rooted trees with n nodes.
a(n) ~ c * d^n / sqrt(n), where d = A051491 = 2.9557652856519949747148..., c = A187770 = 0.4399240125710253040409... . - Vaclav Kotesovec, Oct 30 2014

A203254 G.f.: A(x) = exp( Sum_{n>=1} G_n(x^n)*x^n/n ) such that G_n(x^n) = Product_{k=0..n-1} A(u^k*x) where u is an n-th root of unity.

Original entry on oeis.org

1, 1, 2, 4, 10, 22, 62, 146, 422, 1084, 3160, 8064, 25190, 65204, 198652, 545790, 1680122, 4495548, 14352768, 38665478, 122530052, 343978146, 1072985932, 2947659006, 9662067644, 26573691092, 84395544446, 241295995524, 769819399580, 2140972333774, 7039688293036, 19579468840840
Offset: 0

Views

Author

Paul D. Hanna, Dec 30 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 22*x^5 + 62*x^6 + 146*x^7 +...
G.f.: A(x) = exp( Sum_{n>=1} A203253(n)*x^n/n ),
where A(x) = exp( Sum_{n>=1} G_n(x^n)*x^n/n )
and G_n(x) = exp( Sum_{k>=1} A203253(n*k)*x^k/k ), which begin:
G_1(x) = A(x);
G_2(x) = 1 + 3*x + 16*x^2 + 104*x^3 + 724*x^4 + 5428*x^5 + 44080*x^6 +...;
G_3(x) = 1 + 7*x + 122*x^2 + 2128*x^3 + 52330*x^4 + 1109386*x^5 +...;
G_4(x) = 1 + 23*x + 1080*x^2 + 67944*x^3 + 4595792*x^4 +...;
G_5(x) = 1 + 51*x + 8582*x^2 + 1482524*x^3 + 355949360*x^4 +...;
G_6(x) = 1 + 195*x + 89752*x^2 + 53146664*x^3 + 36695632888*x^4 +...;
G_7(x) = 1 + 435*x + 705756*x^2 + 1208493276*x^3 +...;
G_8(x) = 1 + 1631*x + 7232560*x^2 + 44157620896*x^3 ...;
...
Also, G_n(x^n) = Product_{k=0..n-1} A(u^k*x) where u = n-th root of unity:
G_2(x^2) = A(x)*A(-x);
G_3(x^3) = A(x)*A(u*x)*A(u^2*x) where u = exp(2*Pi*I/3);
G_4(x^4) = A(x)*A(I*x)*A(I^2*x)*A(I^3*x) where I^2 = -1;
...
The logarithmic derivative of this sequence yields A203253:
A203253 = [1,3,7,23,51,195,435,1631,4165,14563,34761,141479,...].
		

Crossrefs

Cf. A203253 (log), A000081.

Programs

  • PARI
    {a(n)=local(L=vector(n,i,1));for(i=1,n,L=Vec(deriv(sum(m=1,n,x^m/m*exp(sum(k=1,floor(n/m),L[m*k]*x^(m*k)/k)+x*O(x^n))))));polcoeff(exp(x*Ser(vector(n,m,L[m]/m))),n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=exp(sum(m=1,n,x^m/m*round(prod(k=0,m-1,subst(A,x,exp(2*Pi*I*k/m)*x+x*O(x^n)))))));polcoeff(A,n)}

Formula

G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * exp( Sum_{k>=1} A203253(n*k)*x^(n*k)/k ) ) where A(x) = exp( Sum_{n>=1} A203253(n)*x^n/n ).
The logarithmic derivative yields A203253.

A203265 L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} x^n/n * exp( Sum_{k>=1} 2*a(n*k)*x^(n*k)/k ).

Original entry on oeis.org

1, 5, 22, 125, 576, 3554, 16843, 103917, 521338, 3189600, 15813205, 101516930, 501568809, 3154939135, 16288999167, 101770328205, 513944896547, 3322082384450, 16707380500562, 106553006536680, 554390049927421, 3479202589748077, 17774723219041838
Offset: 1

Views

Author

Paul D. Hanna, Dec 30 2011

Keywords

Comments

L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} G_n(x^n)^2 * x^n/n where G_n(x) = exp( Sum_{k>=1} a(n*k)*x^k/k ) are integer series.

Examples

			L.g.f.: L(x) = x + 5*x^2/2 + 22*x^3/3 + 125*x^4/4 + 576*x^5/5 + 3554*x^6/6 +...
L.g.f.: L(x) = Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} G_n(x^n)^2*x^n/n
where G_n(x) = exp( Sum_{k>=1} a(n*k)*x^k/k ), which begin:
G_1(x) = 1 + x + 3*x^2 + 10*x^3 + 43*x^4 + 172*x^5 + 852*x^6 +...
G_2(x) = 1 + 5*x + 75*x^2 + 1518*x^3 + 34663*x^4 + 867760*x^5 +...;
G_3(x) = 1 + 22*x + 2019*x^2 + 214648*x^3 + 31221037*x^4 +...;
G_4(x) = 1 + 125*x + 59771*x^2 + 40659310*x^3 + 31438395303*x^4 +...;
G_5(x) = 1 + 576*x + 1760688*x^2 + 6380121685*x^3 +...;
G_6(x) = 1 + 3554*x + 57073923*x^2 + 1295238092004*x^3 +...;
G_7(x) = 1 + 16843*x + 1719312892*x^2 + 212162358939394*x^3 +...;
G_8(x) = 1 + 103917*x + 56284535547*x^2 + 44125115136389518*x^3 +...; ...
		

Crossrefs

Cf. A203266 (exp), A203253, A203267.

Programs

  • PARI
    {a(n)=local(L=vector(n, i, 1)); for(i=1, n, L=Vec(deriv(sum(m=1, n, x^m/m*exp(sum(k=1, floor(n/m), 2*L[m*k]*x^(m*k)/k)+x*O(x^n)))))); L[n]}

Formula

Equals the logarithmic derivative of A203266.

A203267 L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} x^n/n * exp( Sum_{k>=1} 3*a(n*k)*x^(n*k)/k ).

Original entry on oeis.org

1, 7, 46, 371, 2611, 22444, 163010, 1414763, 10666423, 92901977, 700765693, 6267591344, 47400875250, 421269688378, 3261487427911, 28956966303371, 222519855315655, 2011947117233155, 15451470070634425, 138876292766145541, 1085821838608348370, 9706788507990083429
Offset: 1

Views

Author

Paul D. Hanna, Dec 30 2011

Keywords

Comments

L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} G_n(x^n)^3 * x^n/n where G_n(x) = exp( Sum_{k>=1} a(n*k)*x^k/k ) are integer series.

Examples

			L.g.f.: L(x) = x + 7*x^2/2 + 46*x^3/3 + 371*x^4/4 + 2611*x^5/5 +...
L.g.f.: L(x) = Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} G_n(x^n)^3*x^n/n
where G_n(x) = exp( Sum_{k>=1} a(n*k)*x^k/k ), which begin:
G_1(x) = 1 + x + 4*x^2 + 19*x^3 + 116*x^4 + 683*x^5 + 4818*x^6 +...
G_2(x) = 1 + 7*x + 210*x^2 + 8837*x^3 + 427910*x^4 + 22758491*x^5 +...;
G_3(x) = 1 + 46*x + 12280*x^2 + 4087909*x^3 + 1805475734*x^4 +...;
G_4(x) = 1 + 371*x + 776202*x^2 + 2360146453*x^3 +...;
G_5(x) = 1 + 2611*x + 49859649*x^2 + 1211412677799*x^3 +...;
G_6(x) = 1 + 22444*x + 3385662240*x^2 + 742868246890817*x^3 +...;
G_7(x) = 1 + 163010*x + 223920974239*x^2 + 396998122840515180*x^3 +...; ...
		

Crossrefs

Cf. A203268 (exp), A203253, A203265.

Programs

  • PARI
    {a(n)=local(L=vector(n, i, 1)); for(i=1, n, L=Vec(deriv(sum(m=1, n, x^m/m*exp(sum(k=1, floor(n/m), 3*L[m*k]*x^(m*k)/k)+x*O(x^n)))))); L[n]}

Formula

Equals the logarithmic derivative of A203268.
Showing 1-4 of 4 results.