cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203254 G.f.: A(x) = exp( Sum_{n>=1} G_n(x^n)*x^n/n ) such that G_n(x^n) = Product_{k=0..n-1} A(u^k*x) where u is an n-th root of unity.

Original entry on oeis.org

1, 1, 2, 4, 10, 22, 62, 146, 422, 1084, 3160, 8064, 25190, 65204, 198652, 545790, 1680122, 4495548, 14352768, 38665478, 122530052, 343978146, 1072985932, 2947659006, 9662067644, 26573691092, 84395544446, 241295995524, 769819399580, 2140972333774, 7039688293036, 19579468840840
Offset: 0

Views

Author

Paul D. Hanna, Dec 30 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 22*x^5 + 62*x^6 + 146*x^7 +...
G.f.: A(x) = exp( Sum_{n>=1} A203253(n)*x^n/n ),
where A(x) = exp( Sum_{n>=1} G_n(x^n)*x^n/n )
and G_n(x) = exp( Sum_{k>=1} A203253(n*k)*x^k/k ), which begin:
G_1(x) = A(x);
G_2(x) = 1 + 3*x + 16*x^2 + 104*x^3 + 724*x^4 + 5428*x^5 + 44080*x^6 +...;
G_3(x) = 1 + 7*x + 122*x^2 + 2128*x^3 + 52330*x^4 + 1109386*x^5 +...;
G_4(x) = 1 + 23*x + 1080*x^2 + 67944*x^3 + 4595792*x^4 +...;
G_5(x) = 1 + 51*x + 8582*x^2 + 1482524*x^3 + 355949360*x^4 +...;
G_6(x) = 1 + 195*x + 89752*x^2 + 53146664*x^3 + 36695632888*x^4 +...;
G_7(x) = 1 + 435*x + 705756*x^2 + 1208493276*x^3 +...;
G_8(x) = 1 + 1631*x + 7232560*x^2 + 44157620896*x^3 ...;
...
Also, G_n(x^n) = Product_{k=0..n-1} A(u^k*x) where u = n-th root of unity:
G_2(x^2) = A(x)*A(-x);
G_3(x^3) = A(x)*A(u*x)*A(u^2*x) where u = exp(2*Pi*I/3);
G_4(x^4) = A(x)*A(I*x)*A(I^2*x)*A(I^3*x) where I^2 = -1;
...
The logarithmic derivative of this sequence yields A203253:
A203253 = [1,3,7,23,51,195,435,1631,4165,14563,34761,141479,...].
		

Crossrefs

Cf. A203253 (log), A000081.

Programs

  • PARI
    {a(n)=local(L=vector(n,i,1));for(i=1,n,L=Vec(deriv(sum(m=1,n,x^m/m*exp(sum(k=1,floor(n/m),L[m*k]*x^(m*k)/k)+x*O(x^n))))));polcoeff(exp(x*Ser(vector(n,m,L[m]/m))),n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=exp(sum(m=1,n,x^m/m*round(prod(k=0,m-1,subst(A,x,exp(2*Pi*I*k/m)*x+x*O(x^n)))))));polcoeff(A,n)}

Formula

G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * exp( Sum_{k>=1} A203253(n*k)*x^(n*k)/k ) ) where A(x) = exp( Sum_{n>=1} A203253(n)*x^n/n ).
The logarithmic derivative yields A203253.