cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A203265 L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} x^n/n * exp( Sum_{k>=1} 2*a(n*k)*x^(n*k)/k ).

Original entry on oeis.org

1, 5, 22, 125, 576, 3554, 16843, 103917, 521338, 3189600, 15813205, 101516930, 501568809, 3154939135, 16288999167, 101770328205, 513944896547, 3322082384450, 16707380500562, 106553006536680, 554390049927421, 3479202589748077, 17774723219041838
Offset: 1

Views

Author

Paul D. Hanna, Dec 30 2011

Keywords

Comments

L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} G_n(x^n)^2 * x^n/n where G_n(x) = exp( Sum_{k>=1} a(n*k)*x^k/k ) are integer series.

Examples

			L.g.f.: L(x) = x + 5*x^2/2 + 22*x^3/3 + 125*x^4/4 + 576*x^5/5 + 3554*x^6/6 +...
L.g.f.: L(x) = Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} G_n(x^n)^2*x^n/n
where G_n(x) = exp( Sum_{k>=1} a(n*k)*x^k/k ), which begin:
G_1(x) = 1 + x + 3*x^2 + 10*x^3 + 43*x^4 + 172*x^5 + 852*x^6 +...
G_2(x) = 1 + 5*x + 75*x^2 + 1518*x^3 + 34663*x^4 + 867760*x^5 +...;
G_3(x) = 1 + 22*x + 2019*x^2 + 214648*x^3 + 31221037*x^4 +...;
G_4(x) = 1 + 125*x + 59771*x^2 + 40659310*x^3 + 31438395303*x^4 +...;
G_5(x) = 1 + 576*x + 1760688*x^2 + 6380121685*x^3 +...;
G_6(x) = 1 + 3554*x + 57073923*x^2 + 1295238092004*x^3 +...;
G_7(x) = 1 + 16843*x + 1719312892*x^2 + 212162358939394*x^3 +...;
G_8(x) = 1 + 103917*x + 56284535547*x^2 + 44125115136389518*x^3 +...; ...
		

Crossrefs

Cf. A203266 (exp), A203253, A203267.

Programs

  • PARI
    {a(n)=local(L=vector(n, i, 1)); for(i=1, n, L=Vec(deriv(sum(m=1, n, x^m/m*exp(sum(k=1, floor(n/m), 2*L[m*k]*x^(m*k)/k)+x*O(x^n)))))); L[n]}

Formula

Equals the logarithmic derivative of A203266.

A203268 G.f.: A(x) = exp( Sum_{n>=1} G_n(x^n)^3 * x^n/n ) such that G_n(x^n) = Product_{k=0..n-1} A(u^k*x) where u is an n-th root of unity.

Original entry on oeis.org

1, 1, 4, 19, 116, 683, 4818, 31126, 232058, 1598611, 12315375, 86887285, 695017086, 4999457900, 40344295044, 298468091712, 2434392979661, 18077507384936, 150454415661096, 1125745880242406, 9386869540033292, 71518155964958242, 597727034006054509
Offset: 0

Views

Author

Paul D. Hanna, Dec 30 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 19*x^3 + 116*x^4 + 683*x^5 + 4818*x^6 +...
G.f.: A(x) = exp( Sum_{n>=1} A203267(n) * x^n/n ),
where A(x) = exp( Sum_{n>=1} G_n(x^n)^3 * x^n/n )
and G_n(x) = exp( Sum_{k>=1} A203267(n*k)*x^k/k ), which begin:
G_1(x) = A(x);
G_2(x) = 1 + 7*x + 210*x^2 + 8837*x^3 + 427910*x^4 + 22758491*x^5 +...;
G_3(x) = 1 + 46*x + 12280*x^2 + 4087909*x^3 + 1805475734*x^4 +...;
G_4(x) = 1 + 371*x + 776202*x^2 + 2360146453*x^3 +...;
G_5(x) = 1 + 2611*x + 49859649*x^2 + 1211412677799*x^3 +...;
G_6(x) = 1 + 22444*x + 3385662240*x^2 + 742868246890817*x^3 +...;
G_7(x) = 1 + 163010*x + 223920974239*x^2 + 396998122840515180*x^3 +...;
G_8(x) = 1 + 1414763*x + 15479260324770*x^2 + 249608398400792533605*x^3 +...;
...
Also, G_n(x^n) = Product_{k=0..n-1} A(u^k*x) where u = n-th root of unity:
G_2(x^2) = A(x)*A(-x);
G_3(x^3) = A(x)*A(u*x)*A(u^2*x) where u = exp(2*Pi*I/3);
G_4(x^4) = A(x)*A(u*x)*A(u^2*x)*A(u^3*x) where u = exp(2*Pi*I/4);
...
The logarithmic derivative of this sequence yields A203267:
A203267 = [1,7,46,371,2611,22444,163010,1414763,10666423,...].
		

Crossrefs

Cf. A203267 (log), A203254, A203266.

Programs

  • PARI
    {a(n)=local(L=vector(n, i, 1)); for(i=1, n, L=Vec(deriv(sum(m=1, n, x^m/m*exp(sum(k=1, floor(n/m), 3*L[m*k]*x^(m*k)/k)+x*O(x^n)))))); polcoeff(exp(x*Ser(vector(n, m, L[m]/m))), n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, x^m/m*round(prod(k=0, m-1, subst(A^3, x, exp(2*Pi*I*k/m)*x+x*O(x^n))))))); polcoeff(A, n)}

Formula

G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * exp( Sum_{k>=1} 3*A203267(n*k)*x^(n*k)/k ) ) where A(x) = exp( Sum_{n>=1} A203267(n)*x^n/n ).
The logarithmic derivative yields A203267.
Showing 1-2 of 2 results.