A203308 a(n) = A203306(n+1)/A203306(n).
1, 1, 20, 9108, 153675648, 153926018668800, 13624548214772203315200, 148312029363286484759480524800000, 262925014428462931164318003384701335633920000, 96950311125839455466119755365478799838570665250861875200000
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..29
Programs
-
Magma
F:= Factorial; [1] cat [(&*[F(n+1) - F(j): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 30 2023
-
Mathematica
(* First program *) f[j_]:= j!; z = 10; v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}] Table[v[n], {n,0,z}] (* A203306 *) Table[v[n+1]/v[n], {n,0,z}] (* A203308 *) (* Second program *) Table[Product[(n+1)! - k!, {k,n}], {n,0,10}] (* Vaclav Kotesovec, Jan 25 2019 *)
-
Python
from sympy import factorial as f from operator import mul from functools import reduce def v(n): return 1 if n<2 else reduce(mul, (f(k+1) - f(j) for k in range(1,n) for j in range(1, k+1))) print([v(n + 1)//v(n) for n in range(16)]) # Indranil Ghosh, Jul 24 2017
-
SageMath
f=factorial; [product(f(n+1) - f(k) for k in range(1,n+1)) for n in range(21)] # G. C. Greubel, Aug 30 2023
Formula
a(n) ~ (2*Pi)^(n/2) * n^(n*(2*n + 3)/2) / exp(n^2 - 13/12). - Vaclav Kotesovec, Jan 25 2019
a(n) = Product_{j=1..n} ((n+1)! - j!). - G. C. Greubel, Aug 30 2023
Extensions
a(0) = 1 prepended by G. C. Greubel, Aug 30 2023