cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A203311 Vandermonde determinant of (1,2,3,...,F(n+1)), where F=A000045 (Fibonacci numbers).

Original entry on oeis.org

1, 1, 1, 2, 48, 30240, 1596672000, 18172937502720000, 122457316443772566896640000, 1284319496829094129116119090331648000000, 55603466527142141932748234118927499493985767915520000000, 26110840958525805673462196263372614726154694067746586937781385166848000000000
Offset: 0

Views

Author

Clark Kimberling, Jan 01 2012

Keywords

Comments

Each term divides its successor, as in A123741. Each term is divisible by the corresponding superfactorial, A000178(n), as in A203313.
For a signed version, see A123742. For a guide to related sequences, including sequences of Vandermonde permanents, see A093883.

Examples

			v(4) = (2-1)*(3-1)*(3-2)*(5-1)*(5-2)*(5-3).
		

Crossrefs

Programs

  • Maple
    with(LinearAlgebra): F:= combinat[fibonacci]:
    a:= n-> Determinant(VandermondeMatrix([F(i)$i=2..n+1])):
    seq(a(n), n=0..12);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    f[j_] := Fibonacci[j + 1]; z = 15;
    v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
    d[n_] := Product[(i - 1)!, {i, 1, n}]
    Table[v[n], {n, 1, z}]                (* A203311 *)
    Table[v[n + 1]/v[n], {n, 1, z - 1}]   (* A123741 *)
    Table[v[n]/d[n], {n, 1, 13}]          (* A203313 *)
  • Python
    from sympy import fibonacci, factorial
    from operator import mul
    from functools import reduce
    def f(j): return fibonacci(j + 1)
    def v(n): return 1 if n==1 else reduce(mul, [reduce(mul, [f(k) - f(j) for j in range(1, k)]) for k in range(2, n + 1)])
    print([v(n) for n in range(1, 16)]) # Indranil Ghosh, Jul 26 2017

Formula

a(n) ~ c * d^n * phi^(n^3/3 + n^2/2) / 5^(n^2/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio, d = 0.120965069090607877853843907542896935455225485213927649233956250456604334... and c = 197.96410442333389877538426269... - Vaclav Kotesovec, Apr 08 2021
Showing 1-1 of 1 results.