A203315 Vandermonde determinant of the first n odd primes.
1, 2, 16, 3072, 2949120, 118908518400, 30684105356083200, 509012486930992988160000, 1448974328493266972309245132800000, 24498250851046882007528282887645298688000000, 120709538882209643641596013856771385957962848665600000000
Offset: 1
Keywords
Examples
v(3)=(5-3)(7-3)(7-5)=16.
Links
- Robert Israel, Table of n, a(n) for n = 1..35
Programs
-
Maple
Primes:=3: A[1]:= 1: for n from 2 to 20 do Primes:= Primes, ithprime(n+1); A[n]:= A[n-1] * mul(Primes[n]-Primes[i],i=1..n-1); od: seq(A[i],i=1..20);# Robert Israel, Apr 08 2019
-
Mathematica
f[j_] := Prime[j + 1]; z = 17; v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}] d[n_] := Product[(i - 1)!, {i, 1, n}] Table[v[n], {n, 1, z}] (* A203315 *) Table[v[n + 1]/(2 v[n]), {n, 1, z - 1}] (* A203316 *) Table[v[n]/d[n], {n, 1, 20}] (* A203317 *)
Comments