cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203315 Vandermonde determinant of the first n odd primes.

Original entry on oeis.org

1, 2, 16, 3072, 2949120, 118908518400, 30684105356083200, 509012486930992988160000, 1448974328493266972309245132800000, 24498250851046882007528282887645298688000000, 120709538882209643641596013856771385957962848665600000000
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2012

Keywords

Comments

Each term divides its successor, as in A203316, and each term is divisible by the corresponding superfactorial, A000178(n), as in A203317.

Examples

			v(3)=(5-3)(7-3)(7-5)=16.
		

Crossrefs

Programs

  • Maple
    Primes:=3:
    A[1]:= 1:
    for n from 2 to 20 do
      Primes:=  Primes, ithprime(n+1);
      A[n]:= A[n-1] * mul(Primes[n]-Primes[i],i=1..n-1);
    od:
    seq(A[i],i=1..20);# Robert Israel, Apr 08 2019
  • Mathematica
    f[j_] := Prime[j + 1]; z = 17;
    v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
    d[n_] := Product[(i - 1)!, {i, 1, n}]
    Table[v[n], {n, 1, z}]                  (* A203315 *)
    Table[v[n + 1]/(2 v[n]), {n, 1, z - 1}] (* A203316 *)
    Table[v[n]/d[n], {n, 1, 20}]            (* A203317 *)