Original entry on oeis.org
1, 2, 8, 256, 10240, 3440640, 1233125376, 4058744094720, 286551971651911680, 13351029463205868994560, 18128348229848045861669437440, 80945830355202461675325011924090880, 223346912509970707926726595810215906508800
Offset: 1
-
f[j_] := Prime[j + 1]; z = 17;
v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}]
Table[v[n], {n, 1, z}] (* A203315 *)
Table[v[n + 1]/(2 v[n]), {n, 1, z - 1}] (* A203316 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203317 *)
A203316
a(n) = v(n+1)/(2*v(n)), where v=A203315.
Original entry on oeis.org
1, 4, 96, 480, 20160, 129024, 8294400, 1423319040, 8453652480, 2463635865600, 89117289676800, 660834091008000, 63038756487168000, 20712734274355200000, 4023397460155878604800, 27460572284725493760000
Offset: 1
-
f[j_] := Prime[j + 1]; z = 17;
v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}]
Table[v[n], {n, 1, z}] (* A203315 *)
Table[v[n + 1]/(2 v[n]), {n, 1, z - 1}] (* A203316 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203317 *)
A093883
Product of all possible sums of two distinct numbers taken from among first n natural numbers.
Original entry on oeis.org
1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1
A203524
a(n) = Product_{2 <= i < j <= n+1} (prime(i) + prime(j)).
Original entry on oeis.org
1, 8, 960, 3870720, 535088332800, 4746447547269120000, 2251903055463146166681600000, 101133031075657891684280256430080000000, 764075218501479062478490016486870993810227200000000, 510692344365454233151092604262379676645631378616169267200000000000
Offset: 1
-
a:= n-> mul(mul(ithprime(i)+ithprime(j), i=2..j-1), j=3..n+1):
seq(a(n), n=1..10); # Alois P. Heinz, Jul 23 2017
-
f[j_] := Prime[j + 1]; z = 17;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203524 *)
Table[v[n + 1]/(8 v[n]), {n, 1, z - 1}] (* A203525 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203526 *)
A203525
a(n) = v(n+1)/(8*v(n)), where v=A203524.
Original entry on oeis.org
1, 15, 504, 17280, 1108800, 59304960, 5613753600, 944393748480, 83547459072000, 18057977118720000, 2985679725841612800, 366843845931171840000, 71218197373471948800000, 22048551163610844364800000, 7384118713322835982417920000
Offset: 1
-
f[j_] := Prime[j + 1]; z = 17;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203524 *)
Table[v[n + 1]/(8 v[n]), {n, 1, z - 1}] (* A203525 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203526 *)
Showing 1-5 of 5 results.
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula
Extensions