A203469 a(n) = v(n)/A000178(n), v = A093883 and A000178 = (superfactorials).
1, 3, 30, 1050, 132300, 61122600, 104886381600, 674943865596000, 16407885372638760000, 1515727634953623371280000, 534621388490302221024396480000, 722849817707190846398223943885440000, 3759035907022704558524683975387453632000000
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..55
Programs
-
Magma
[(&*[Binomial(2*n-k,k): k in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 29 2023
-
Mathematica
(* First program *) f[j_]:= j; z = 16; v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}] d[n_]:= Product[(i-1)!, {i,n}] Table[v[n], {n,z}] (* A093883 *) Table[v[n+1]/v[n], {n,z-1}] (* A006963 *) Table[v[n]/d[n], {n,20}] (* A203469 *) (* Second program *) Table[Product[Binomial[2*n-j,j], {j,n}], {n,20}] (* G. C. Greubel, Aug 29 2023 *)
-
SageMath
[product(binomial(2*n-j,j) for j in range(n)) for n in range(1, 20)] # G. C. Greubel, Aug 29 2023
Formula
a(n) = Product_{i=1..n} binomial(2n-i,i). - Enrique Pérez Herrero, Feb 20 2013
From G. C. Greubel, Aug 29 2023: (Start)
a(n) = (2^n/sqrt(Pi))^n*BarnesG(n+3/2)/(BarnesG(n+2)*BarnesG(3/2)).
a(n) = (n!/2^(n-1))*Product_{j=1..n-1} Catalan(j). (End)
a(n) ~ A^(3/2) * exp(n/2 - 1/8) * 2^(n^2 - 7/24) / (Pi^(n/2 + 1/2) * n^(n/2 + 3/8)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 26 2023